These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 37972669)

  • 1. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens.
    Newby ML; Allen JD; Crispin M
    Biotechnol Adv; 2024; 70():108283. PubMed ID: 37972669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes.
    Ringe RP; Pugach P; Cottrell CA; LaBranche CC; Seabright GE; Ketas TJ; Ozorowski G; Kumar S; Schorcht A; van Gils MJ; Crispin M; Montefiori DC; Wilson IA; Ward AB; Sanders RW; Klasse PJ; Moore JP
    J Virol; 2019 Feb; 93(4):. PubMed ID: 30487280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers.
    Ringe RP; Ozorowski G; Rantalainen K; Struwe WB; Matthews K; Torres JL; Yasmeen A; Cottrell CA; Ketas TJ; LaBranche CC; Montefiori DC; Cupo A; Crispin M; Wilson IA; Ward AB; Sanders RW; Klasse PJ; Moore JP
    J Virol; 2017 Aug; 91(15):. PubMed ID: 28539451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation profiling to evaluate glycoprotein immunogens against HIV-1.
    Behrens AJ; Struwe WB; Crispin M
    Expert Rev Proteomics; 2017 Oct; 14(10):881-890. PubMed ID: 28870097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan.
    Liang Y; Guttman M; Williams JA; Verkerke H; Alvarado D; Hu SL; Lee KK
    J Virol; 2016 Oct; 90(20):9224-36. PubMed ID: 27489265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmasking Stem-Specific Neutralizing Epitopes by Abolishing N-Linked Glycosylation Sites of Influenza Virus Hemagglutinin Proteins for Vaccine Design.
    Liu WC; Jan JT; Huang YJ; Chen TH; Wu SC
    J Virol; 2016 Oct; 90(19):8496-508. PubMed ID: 27440889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope.
    Pritchard LK; Harvey DJ; Bonomelli C; Crispin M; Doores KJ
    J Virol; 2015 Sep; 89(17):8932-44. PubMed ID: 26085151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor.
    Alam SM; Cronin K; Parks R; Anasti K; Ding H; Go EP; Desaire H; Eaton A; Montefiori D; Sodroski J; Kappes J; Haynes BF; Saunders KO
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32817216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.
    Behrens AJ; Kumar A; Medina-Ramirez M; Cupo A; Marshall K; Cruz Portillo VM; Harvey DJ; Ozorowski G; Zitzmann N; Wilson IA; Ward AB; Struwe WB; Moore JP; Sanders RW; Crispin M
    J Proteome Res; 2018 Mar; 17(3):987-999. PubMed ID: 29420040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Architecture of the Cleavage-Dependent Mannose Patch on a Soluble HIV-1 Envelope Glycoprotein Trimer.
    Behrens AJ; Harvey DJ; Milne E; Cupo A; Kumar A; Zitzmann N; Struwe WB; Moore JP; Crispin M
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity.
    Hyakumura M; Walsh R; Thaysen-Andersen M; Kingston NJ; La M; Lu L; Lovrecz G; Packer NH; Locarnini S; Netter HJ
    J Virol; 2015 Nov; 89(22):11312-22. PubMed ID: 26339047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies.
    Ingale J; Tran K; Kong L; Dey B; McKee K; Schief W; Kwong PD; Mascola JR; Wyatt RT
    J Virol; 2014 Dec; 88(24):14002-16. PubMed ID: 25253346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus.
    Murugavelu P; Perween R; Shrivastava T; Singh V; Ahmad Parray H; Singh S; Chiranjivi AK; Thiruvengadam R; Singh S; Yadav N; Jakhar K; Sonar S; Mani S; Bhattacharyya S; Sharma C; Vishwakarma P; Khatri R; Kumar Panchal A; Das S; Ahmed S; Samal S; Kshetrapal P; Bhatnagar S; Luthra K; Kumar R
    Int Immunopharmacol; 2021 Oct; 99():108020. PubMed ID: 34426117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Glycoprotein E of Varicella Zoster Virus Contains Glycan-Peptide Motifs That Modulate B Cell Epitopes into Discrete Immunological Signatures.
    Nordén R; Nilsson J; Samuelsson E; Risinger C; Sihlbom C; Blixt O; Larson G; Olofsson S; Bergström T
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation.
    Zhou T; Doria-Rose NA; Cheng C; Stewart-Jones GBE; Chuang GY; Chambers M; Druz A; Geng H; McKee K; Kwon YD; O'Dell S; Sastry M; Schmidt SD; Xu K; Chen L; Chen RE; Louder MK; Pancera M; Wanninger TG; Zhang B; Zheng A; Farney SK; Foulds KE; Georgiev IS; Joyce MG; Lemmin T; Narpala S; Rawi R; Soto C; Todd JP; Shen CH; Tsybovsky Y; Yang Y; Zhao P; Haynes BF; Stamatatos L; Tiemeyer M; Wells L; Scorpio DG; Shapiro L; McDermott AB; Mascola JR; Kwong PD
    Cell Rep; 2017 Apr; 19(4):719-732. PubMed ID: 28445724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans.
    Zhang H; Fu H; Luallen RJ; Liu B; Lee FH; Doms RW; Geng Y
    Vaccine; 2015 Sep; 33(39):5140-7. PubMed ID: 26277072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploitation of glycosylation in enveloped virus pathobiology.
    Watanabe Y; Bowden TA; Wilson IA; Crispin M
    Biochim Biophys Acta Gen Subj; 2019 Oct; 1863(10):1480-1497. PubMed ID: 31121217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein and Glycan Mimicry in HIV Vaccine Design.
    Seabright GE; Doores KJ; Burton DR; Crispin M
    J Mol Biol; 2019 May; 431(12):2223-2247. PubMed ID: 31028779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein.
    Zhang S; Go EP; Ding H; Anang S; Kappes JC; Desaire H; Sodroski JG
    J Virol; 2022 Feb; 96(3):e0162621. PubMed ID: 34817202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmenting glycosylation-directed folding pathways enhances the fidelity of HIV Env immunogen production in plants.
    Margolin E; Allen JD; Verbeek M; Chapman R; Meyers A; van Diepen M; Ximba P; Motlou T; Moore PL; Woodward J; Strasser R; Crispin M; Williamson AL; Rybicki EP
    Biotechnol Bioeng; 2022 Oct; 119(10):2919-2937. PubMed ID: 35781691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.