These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37972832)
21. Helicoverpa armigera ATP-binding cassette transporter ABCA2 is a functional receptor of Bacillus thuringiensis Cry2Ab toxin. Gan C; Zhang Z; Jin Z; Wang F; Fabrick JA; Wu Y Pestic Biochem Physiol; 2023 Dec; 197():105658. PubMed ID: 38072533 [TBL] [Abstract][Full Text] [Related]
22. Characterization of the individual domains of the Bacillus thuringiensis Cry2Aa implicates Domain I as a possible binding site to Helicoverpa armigera. Meng M; Shen C; Lin M; Jin J; Chen W; Zhang X; Xu C; Hu X; Zhu Q; Chen C; Xie Y; Jacob Pooe O; Crickmore N; Liu X; Lü P; Liu Y J Invertebr Pathol; 2024 Jul; 205():108129. PubMed ID: 38754546 [TBL] [Abstract][Full Text] [Related]
23. ATP-Binding Cassette Subfamily A Member 2 is a Functional Receptor for Li X; Miyamoto K; Takasu Y; Wada S; Iizuka T; Adegawa S; Sato R; Watanabe K Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32041133 [No Abstract] [Full Text] [Related]
25. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. Gómez I; Arenas I; Benitez I; Miranda-Ríos J; Becerril B; Grande R; Almagro JC; Bravo A; Soberón M J Biol Chem; 2006 Nov; 281(45):34032-9. PubMed ID: 16968705 [TBL] [Abstract][Full Text] [Related]
26. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity. Zhang H; Yu S; Shi Y; Yang Y; Fabrick JA; Wu Y Insect Biochem Mol Biol; 2017 Jul; 86():41-49. PubMed ID: 28576655 [TBL] [Abstract][Full Text] [Related]
27. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
28. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Estela A; Escriche B; Ferré J Appl Environ Microbiol; 2004 Mar; 70(3):1378-84. PubMed ID: 15006756 [TBL] [Abstract][Full Text] [Related]
29. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Pacheco S; Gómez I; Gill SS; Bravo A; Soberón M Peptides; 2009 Mar; 30(3):583-8. PubMed ID: 18778745 [TBL] [Abstract][Full Text] [Related]
30. Evidence of a shared binding site for Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Cnaphalocrocis medinalis cadherin. Zhong J; Fang S; Gao M; Lu L; Zhang X; Zhu Q; Liu Y; Jurat-Fuentes JL; Liu X Insect Mol Biol; 2022 Feb; 31(1):101-114. PubMed ID: 34637177 [TBL] [Abstract][Full Text] [Related]
31. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Hernández-Rodríguez CS; Van Vliet A; Bautsoens N; Van Rie J; Ferré J Appl Environ Microbiol; 2008 Dec; 74(24):7654-9. PubMed ID: 18931285 [TBL] [Abstract][Full Text] [Related]
32. Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Jurat-Fuentes JL; Adang MJ Appl Environ Microbiol; 2001 Jan; 67(1):323-9. PubMed ID: 11133462 [TBL] [Abstract][Full Text] [Related]
33. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
34. A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests. Rausell C; Martínez-Ramírez AC; García-Robles I; Real MD Appl Environ Microbiol; 2000 Apr; 66(4):1553-8. PubMed ID: 10742241 [TBL] [Abstract][Full Text] [Related]
35. Univalent binding of the Cry1Ab toxin of Bacillus thuringiensis to a conserved structural motif in the cadherin receptor BT-R1. Griko NB; Rose-Young L; Zhang X; Carpenter L; Candas M; Ibrahim MA; Junker M; Bulla LA Biochemistry; 2007 Sep; 46(35):10001-7. PubMed ID: 17696320 [TBL] [Abstract][Full Text] [Related]
36. Establishment of monoclonal antibody and scFv immuno-based assay for Cry2Aa toxin in spiked grain samples. Shen C; Hao J; Li Y; Jin J; Meng M; Zhang X; Lin M; Xu C; Zhu Q; Xie Y; Lin J; Liu Y; Liu X Anal Biochem; 2023 Sep; 677():115270. PubMed ID: 37531991 [TBL] [Abstract][Full Text] [Related]
37. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Ibargutxi MA; Estela A; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075 [TBL] [Abstract][Full Text] [Related]
38. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Jurat-Fuentes JL; Adang MJ Biochemistry; 2006 Aug; 45(32):9688-95. PubMed ID: 16893170 [TBL] [Abstract][Full Text] [Related]
39. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Soares Figueiredo C; Nunes Lemes AR; Sebastião I; Desidério JA Appl Biochem Biotechnol; 2019 Jul; 188(3):798-809. PubMed ID: 30706415 [TBL] [Abstract][Full Text] [Related]
40. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Xie Y; Xu C; Gao M; Zhang X; Lu L; Hu X; Chen W; Jurat-Fuentes JL; Zhu Q; Liu Y; Lin M; Zhong J; Liu X Pest Manag Sci; 2021 Oct; 77(10):4593-4606. PubMed ID: 34092019 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]