BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37973380)

  • 1. Origin of Discrete and Continuous Dark Noise in Rod Photoreceptors.
    Bocchero U; Pahlberg J
    eNeuro; 2023 Nov; 10(11):. PubMed ID: 37973380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin.
    Frederiksen R; Morshedian A; Tripathy SA; Xu T; Travis GH; Fain GL; Sampath AP
    J Neurosci; 2021 Apr; 41(15):3320-3330. PubMed ID: 33593858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of the Rod Photoreceptor Response Depends Critically on the Concentration of the Phosphodiesterase Effector Enzyme.
    Morshedian A; Sendek G; Ng SY; Boyd K; Radu RA; Liu M; Artemyev NO; Sampath AP; Fain GL
    J Neurosci; 2022 Mar; 42(11):2180-2189. PubMed ID: 35091503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic manipulation of rod-cone differences in mouse retina.
    Morshedian A; Jiang Z; Radu RA; Fain GL; Sampath AP
    PLoS One; 2024; 19(5):e0300584. PubMed ID: 38709779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular origin of continuous dark noise in rod photoreceptors.
    Rieke F; Baylor DA
    Biophys J; 1996 Nov; 71(5):2553-72. PubMed ID: 8913594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two components of electrical dark noise in toad retinal rod outer segments.
    Baylor DA; Matthews G; Yau KW
    J Physiol; 1980 Dec; 309():591-621. PubMed ID: 6788941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation.
    Rajala A; Daly RJ; Tanito M; Allen DT; Holt LJ; Lobanova ES; Arshavsky VY; Rajala RV
    Biochemistry; 2009 Jun; 48(24):5563-72. PubMed ID: 19438210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rejection of the biophoton hypothesis on the origin of photoreceptor dark noise.
    Govardovskii VI; Astakhova LA; Rotov AY; Firsov ML
    J Gen Physiol; 2019 Jul; 151(7):887-897. PubMed ID: 30992369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal phosphenes and discrete dark noises in rods: a new biophysical framework.
    Bókkon I; Vimal RL
    J Photochem Photobiol B; 2009 Sep; 96(3):255-9. PubMed ID: 19643631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phototransduction in Anuran Green Rods: Origins of Extra-Sensitivity.
    Astakhova LA; Novoselov AD; Ermolaeva ME; Firsov ML; Rotov AY
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness.
    Chai Z; Ye Y; Silverman D; Rose K; Madura A; Reed RR; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2404763121. PubMed ID: 38743626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic GMP and photoreceptor function.
    Lolley RN; Lee RH
    FASEB J; 1990 Sep; 4(12):3001-8. PubMed ID: 1697545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors.
    Astakhova LA; Nikolaeva DA; Fedotkina TV; Govardovskii VI; Firsov ML
    J Gen Physiol; 2017 Jul; 149(7):689-701. PubMed ID: 28611079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release.
    Woodruff ML; Lem J; Fain GL
    J Physiol; 2004 Jun; 557(Pt 3):821-8. PubMed ID: 15073279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of mouse rod response decay by rhodopsin kinase and recoverin.
    Chen CK; Woodruff ML; Chen FS; Chen Y; Cilluffo MC; Tranchina D; Fain GL
    J Neurosci; 2012 Nov; 32(45):15998-6006. PubMed ID: 23136436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice.
    Sakurai K; Onishi A; Imai H; Chisaka O; Ueda Y; Usukura J; Nakatani K; Shichida Y
    J Gen Physiol; 2007 Jul; 130(1):21-40. PubMed ID: 17591985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism.
    Sundar JC; Munezero D; Bryan-Haring C; Saravanan T; Jacques A; Ramamurthy V
    Hum Mol Genet; 2020 Feb; 29(3):394-406. PubMed ID: 31925423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.