BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37973704)

  • 21. How does the global plastic waste trade contribute to environmental benefits: Implication for reductions of greenhouse gas emissions?
    Liu Z; Liu W; Walker TR; Adams M; Zhao J
    J Environ Manage; 2021 Jun; 287():112283. PubMed ID: 33706087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Galyean appreciation club review: a holistic perspective of the societal relevance of beef production and its impacts on climate change.
    Tedeschi LO; Beauchemin KA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36645233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low Greenhouse Gas Emission Self-Selective Diets and Risk of Metabolic Syndrome in Adults 40 and Older: A Prospective Cohort Study in South Korea.
    Tan LJ; Shin S
    Environ Health Perspect; 2023 Nov; 131(11):117010. PubMed ID: 37976131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland.
    Clarke R; Sosa A; Murphy F
    Sci Total Environ; 2019 May; 664():262-275. PubMed ID: 30743120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of different life cycle stages to the greenhouse gas emissions associated with three balanced dietary patterns.
    Corrado S; Luzzani G; Trevisan M; Lamastra L
    Sci Total Environ; 2019 Apr; 660():622-630. PubMed ID: 30641391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.
    Porter SD; Reay DS; Higgins P; Bomberg E
    Sci Total Environ; 2016 Nov; 571():721-9. PubMed ID: 27432722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental Impact of Dietary Choices: Role of the Mediterranean and Other Dietary Patterns in an Italian Cohort.
    Grosso G; Fresán U; Bes-Rastrollo M; Marventano S; Galvano F
    Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32106472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions.
    Cusack DF; Kazanski CE; Hedgpeth A; Chow K; Cordeiro AL; Karpman J; Ryals R
    Glob Chang Biol; 2021 May; 27(9):1721-1736. PubMed ID: 33657680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring greenhouse gas emissions pathways and stakeholder perspectives: In search of circular economy policy innovation for waste paper management and carbon neutrality in Hong Kong.
    Chen P; Sauerwein M; Steuer B
    J Environ Manage; 2023 Sep; 341():118072. PubMed ID: 37178542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains.
    Li Y; Zhong H; Shan Y; Hang Y; Wang D; Zhou Y; Hubacek K
    Nat Food; 2023 Jun; 4(6):483-495. PubMed ID: 37322300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
    Mohareb EA; Heller MC; Guthrie PM
    Environ Sci Technol; 2018 May; 52(10):5545-5554. PubMed ID: 29717606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA.
    Graves RA; Haugo RD; Holz A; Nielsen-Pincus M; Jones A; Kellogg B; Macdonald C; Popper K; Schindel M
    PLoS One; 2020; 15(4):e0230424. PubMed ID: 32275725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Greenhouse gas emissions intensity of food production systems and its determinants.
    Mrówczyńska-Kamińska A; Bajan B; Pawłowski KP; Genstwa N; Zmyślona J
    PLoS One; 2021; 16(4):e0250995. PubMed ID: 33930083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study.
    Tainio M; Monsivais P; Jones NR; Brand C; Woodcock J
    BMJ Open; 2017 Feb; 7(2):e014199. PubMed ID: 28399514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate-friendly and nutrition-sensitive interventions can close the global dietary nutrient gap while reducing GHG emissions.
    Geyik Ö; Hadjikakou M; Bryan BA
    Nat Food; 2023 Jan; 4(1):61-73. PubMed ID: 37118573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The greenhouse gas footprints of China's food production and consumption (1987-2017).
    Zhang H; Xu Y; Lahr ML
    J Environ Manage; 2022 Jan; 301():113934. PubMed ID: 34731952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consumer strategies towards a more sustainable food system: insights from Switzerland.
    Frehner A; De Boer IJM; Muller A; Van Zanten HHE; Schader C
    Am J Clin Nutr; 2022 Apr; 115(4):1039-1047. PubMed ID: 34871355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental impact assessment of a combined bioprocess for hydrogen production from food waste.
    Zheng X; Wang J; Huang J; Xu X; Tang J; Hou P; Han W; Li H
    Waste Manag; 2024 Jan; 173():152-159. PubMed ID: 37989014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.