These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37973779)

  • 21. Real-world emissions and fuel consumption of gasoline and hybrid light duty vehicles under local and regulatory drive cycles.
    Tu R; Xu J; Wang A; Zhang M; Zhai Z; Hatzopoulou M
    Sci Total Environ; 2022 Jan; 805():150407. PubMed ID: 34818772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of CO
    Oh Y; Park J; Lee JT; Seo J; Park S
    Sci Total Environ; 2017 Oct; 595():2-12. PubMed ID: 28365459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-world fuel use and gaseous emission rates for flex fuel vehicles operated on E85 versus gasoline.
    Delavarrafiee M; Frey HC
    J Air Waste Manag Assoc; 2018 Mar; 68(3):235-254. PubMed ID: 29215964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment.
    Yang L; Yu B; Malima G; Yang B; Chen H; Wei YM
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7793-7810. PubMed ID: 34480315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV.
    Adnan N; Nordin SM; Rahman I; Amini MH
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):17955-17975. PubMed ID: 28612311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Addressing the range anxiety of battery electric vehicles with charging en route.
    Chakraborty P; Parker R; Hoque T; Cruz J; Du L; Wang S; Bhunia S
    Sci Rep; 2022 Apr; 12(1):5588. PubMed ID: 35379831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.
    Samaras C; Meisterling K
    Environ Sci Technol; 2008 May; 42(9):3170-6. PubMed ID: 18522090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life cycle water footprint of electric and internal combustion engine vehicles in China.
    Yang L; Chen H; Li H; Feng Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80442-80461. PubMed ID: 37300733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis.
    Woo SH; Jang H; Lee SB; Lee S
    Sci Total Environ; 2022 Oct; 842():156961. PubMed ID: 35760182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Air Emission Externalities on Optimal Ridesourcing Fleet Electrification and Operations.
    Bruchon MB; Michalek JJ; Azevedo IL
    Environ Sci Technol; 2021 Mar; 55(5):3188-3200. PubMed ID: 33601882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-world particle and NO
    Li C; Swanson J; Pham L; Hu S; Hu S; Mikailian G; Jung HS
    Environ Pollut; 2021 Oct; 286():117320. PubMed ID: 33991739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.
    Huang WD; Zhang YH
    PLoS One; 2011; 6(7):e22113. PubMed ID: 21765941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles.
    Huang Y; Surawski NC; Organ B; Zhou JL; Tang OHH; Chan EFC
    Sci Total Environ; 2019 Apr; 659():275-282. PubMed ID: 30599346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impacts on real-world extra cold start emissions: Fuel injection, powertrain, aftertreatment and ambient temperature.
    Wu X; Zhao H; He L; Yang X; Jiang H; Fu M; Yin H; Ding Y
    Environ Pollut; 2023 May; 324():121339. PubMed ID: 36863441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trends in onroad transportation energy and emissions.
    Frey HC
    J Air Waste Manag Assoc; 2018 Jun; 68(6):514-563. PubMed ID: 29589998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.