BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37974445)

  • 1. Humidity Enhances the Solid-Phase Catalytic Ability of a Bulk MOF-808 Metal-Organic Gel toward a Chemical Warfare Agent Simulant.
    Zhou C; Li L; Qin H; Wu Q; Wang L; Lin C; Yang B; Tao CA; Zhang S
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54582-54589. PubMed ID: 37974445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH
    Zhou C; Yuan B; Zhang S; Yang G; Lu L; Li H; Tao CA
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks.
    Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Function Detoxifying Nanofabrics against Nerve Agent and Blistering Agent Simulants.
    Wu T; Qiu F; Xu R; Zhao Q; Guo L; Chen D; Li C; Jiao X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1265-1275. PubMed ID: 36594244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible SIS/HKUST-1 Mixed Matrix Composites as Protective Barriers against Chemical Warfare Agent Simulants.
    Peterson GW; Browe MA; Durke EM; Epps TH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43080-43087. PubMed ID: 30426748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UiO-66-NH
    Zhang X; Sun Y; Liu Y; Zhai Z; Guo S; Peng L; Qin Y; Li C
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39976-39984. PubMed ID: 34379383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.
    Liu Y; Moon SY; Hupp JT; Farha OK
    ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework.
    Atilgan A; Islamoglu T; Howarth AJ; Hupp JT; Farha OK
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24555-24560. PubMed ID: 28653831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Catalysis between Dual Copper Centers in a Metal-Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants.
    Wang QY; Sun ZB; Zhang M; Zhao SN; Luo P; Gong CH; Liu WX; Zang SQ
    J Am Chem Soc; 2022 Nov; 144(46):21046-21055. PubMed ID: 36316180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn
    Yang J; He X; Dai J; Tian R; Yuan D
    J Hazard Mater; 2021 Sep; 417():126056. PubMed ID: 33992917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant.
    Shen C; Mao Z; Xu H; Zhang L; Zhong Y; Wang B; Feng X; Tao CA; Sui X
    Carbohydr Polym; 2019 Jun; 213():184-191. PubMed ID: 30879659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion.
    Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework.
    Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y
    ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants.
    Xu R; Wu T; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30360-30371. PubMed ID: 37311009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in process engineering and upcoming applications of metal-organic frameworks.
    Ryu U; Jee S; Rao PC; Shin J; Ko C; Yoon M; Park KS; Choi KM
    Coord Chem Rev; 2021 Jan; 426():213544. PubMed ID: 32981945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-Stable Chemical-Protective Textiles via Euhedral Surface-Oriented 2D Cu-TCPP Metal-Organic Frameworks.
    Lee DT; Jamir JD; Peterson GW; Parsons GN
    Small; 2019 Mar; 15(10):e1805133. PubMed ID: 30707495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile and rapid synthesis of functionalized Zr-BTC for the optical detection of the blistering agent simulant 2-chloroethyl ethyl sulfide (CEES).
    Abuzalat O; Homayoonnia S; Wong D; Tantawy HR; Kim S
    Dalton Trans; 2021 Mar; 50(9):3261-3268. PubMed ID: 33586726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Metal-Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms.
    Oliver MC; Huang L
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework.
    Liu Y; Howarth AJ; Hupp JT; Farha OK
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):9001-5. PubMed ID: 26083551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.