These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37974445)

  • 61. Measuring Mass Transfer of
    Son FA; Shi K; Snurr RQ; Farha OK
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31534-31542. PubMed ID: 38856659
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chemical Protective Textiles of UiO-66-Integrated PVDF Composite Fibers with Rapid Heterogeneous Decontamination of Toxic Organophosphates.
    Dwyer DB; Dugan N; Hoffman N; Cooke DJ; Hall MG; Tovar TM; Bernier WE; DeCoste J; Pomerantz NL; Jones WE
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34585-34591. PubMed ID: 30207449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis of sputter deposited CuO nanoparticles and their use for decontamination of 2-chloroethyl ethyl sulfide (CEES).
    Verma M; Gupta VK; Dave V; Chandra R; Prasad GK
    J Colloid Interface Sci; 2015 Jan; 438():102-109. PubMed ID: 25454431
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detoxification of Chemical Warfare Agents Using a Zr
    Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK
    Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.
    Liang H; Yao A; Jiao X; Li C; Chen D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20396-20403. PubMed ID: 29806452
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemical Warfare Agents Detoxification Properties of Zirconium Metal-Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites.
    Gil-San-Millan R; López-Maya E; Hall M; Padial NM; Peterson GW; DeCoste JB; Rodríguez-Albelo LM; Oltra JE; Barea E; Navarro JAR
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23967-23973. PubMed ID: 28653852
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
    Carniato F; Bisio C; Psaro R; Marchese L; Guidotti M
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10095-8. PubMed ID: 25056451
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Significance of porous structure on degradatin of 2,2' dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure.
    Singh B; Mahato TH; Srivastava AK; Prasad GK; Ganesan K; Vijayaraghavan R; Jain R
    J Hazard Mater; 2011 Jun; 190(1-3):1053-7. PubMed ID: 21444151
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Doubly Protective MOF-Photo-Fabrics: Facile Template-Free Synthesis of PCN-222-Textiles Enables Rapid Hydrolysis, Photo-Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants.
    Barton HF; Jamir JD; Davis AK; Peterson GW; Parsons GN
    Chemistry; 2021 Jan; 27(4):1465-1472. PubMed ID: 32875644
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of superabsorbent polymers (SAP) and metal organic frameworks (MOF) wiping sandwich patch on human skin decontamination and detoxification in vitro.
    Cao Y; Hui X; Maibach HI
    Toxicol Lett; 2021 Feb; 337():7-17. PubMed ID: 33197554
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and characterization of TiO
    Šťastný M; Štengl V; Henych J; Tolasz J; Kormunda M; Ederer J; Issa G; Janoš P
    RSC Adv; 2020 May; 10(33):19542-19552. PubMed ID: 35515455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants.
    Snider VG; Alshehri R; Slaugenhaupt RM; Hill CL
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51519-51524. PubMed ID: 34665594
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Utilizing Zirconium MOF-functionalized Fiber Substrates Prepared by Molecular Layer Deposition for Toxic Gas Capture and Chemical Warfare Agent Degradation.
    Gorzkowska-Sobas A; Lausund KB; de Koning MC; Petrovic V; Chavan SM; Smith MW; Nilsen O
    Glob Chall; 2021 Dec; 5(12):2100001. PubMed ID: 34938573
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multivariate Hydrogen-Bonded Organic Frameworks with Tunable Permanent Porosities for Capture of a Mustard Gas Simulant.
    Yu Gao X; Wang Y; Wu E; Wang C; Li B; Zhou Y; Chen B; Li P
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312393. PubMed ID: 37773007
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ultrafine Silver Nanoparticle Encapsulated Porous Molecular Traps for Discriminative Photoelectrochemical Detection of Mustard Gas Simulants by Synergistic Size-Exclusion and Site-Specific Recognition.
    Wang C; Wang Y; Kirlikovali KO; Ma K; Zhou Y; Li P; Farha OK
    Adv Mater; 2022 Sep; 34(35):e2202287. PubMed ID: 35790037
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stretchable and Multi-Metal-Organic Framework Fabrics Via High-Yield Rapid Sorption-Vapor Synthesis and Their Application in Chemical Warfare Agent Hydrolysis.
    Morgan SE; O'Connell AM; Jansson A; Peterson GW; Mahle JJ; Eldred TB; Gao W; Parsons GN
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31279-31284. PubMed ID: 34170678
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal.
    Wang X; Su R; Zhao Y; Guo W; Gao S; Li K; Liang G; Luan Z; Li L; Xi H; Zou R
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58848-58861. PubMed ID: 34855367
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid Capture and Hydrolysis of a Sulfur Mustard Gas in Silver-Ion-Exchanged Zeolite Y.
    Son YR; Kim MK; Ryu SG; Kim HS
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40651-40660. PubMed ID: 30375849
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework.
    Liu Y; Buru CT; Howarth AJ; Mahle JJ; Buchanan JH; DeCoste JB; Hupp JT; Farha OK
    J Mater Chem A Mater; 2016; 4(36):13809-13813. PubMed ID: 28919977
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultrafast Sulfur Mustard Simulant Gas Fluorescent Chemosensors Based on Triazole AIEE Material with High Selectivity and Sensitivity at Room Temperature.
    Zheng P; Cao W; Zhang Y; Li F; Zhang M
    ACS Sens; 2022 Jul; 7(7):1946-1957. PubMed ID: 35819023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.