These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37974580)

  • 1. Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support.
    Choi YJ; Kwon OS; Kim SP
    Cogn Neurodyn; 2023 Dec; 17(6):1401-1416. PubMed ID: 37974580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Emotional Stimulations on the Online Operation of a P300-Based Brain-Computer Interface.
    Kim M; Kim J; Heo D; Choi Y; Lee T; Kim SP
    Front Hum Neurosci; 2021; 15():612777. PubMed ID: 33767615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning.
    Ogino M; Hamada N; Mitsukura Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357
    [No Abstract]   [Full Text] [Related]  

  • 4. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering.
    Mobaien A; Boostani R; Sanei S
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418
    [No Abstract]   [Full Text] [Related]  

  • 6. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state.
    Pires G; Barbosa S; Nunes UJ; Gonçalves E
    J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
    Barbosa S; Pires G; Nunes U
    J Neurosci Methods; 2016 Mar; 261():47-61. PubMed ID: 26687642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces.
    Ogino M; Kanoga S; Muto M; Mitsukura Y
    Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface.
    Yin E; Zeyl T; Saab R; Hu D; Zhou Z; Chau T
    Int J Neural Syst; 2016 Feb; 26(1):1650001. PubMed ID: 26678249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-computer interface with rapid serial multimodal presentation using artificial facial images and voice.
    Onishi A
    Comput Biol Med; 2021 Sep; 136():104685. PubMed ID: 34343888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of auditory and visual p300 brain-computer interface aptitude.
    Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel hybrid auditory BCI paradigm combining ASSR and P300.
    Kaongoen N; Jo S
    J Neurosci Methods; 2017 Mar; 279():44-51. PubMed ID: 28109832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 30+ years of P300 brain-computer interfaces.
    Allison BZ; Kübler A; Jin J
    Psychophysiology; 2020 Jul; 57(7):e13569. PubMed ID: 32301143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Does the Degree of Valence Influence Affective Auditory P300-Based BCIs?
    Onishi A; Nakagawa S
    Front Neurosci; 2019; 13():45. PubMed ID: 30837822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.
    Huang M; Jin J; Zhang Y; Hu D; Wang X
    Cogn Neurodyn; 2018 Feb; 12(1):85-94. PubMed ID: 29435089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.
    Jin J; Allison BZ; Wang X; Neuper C
    J Neurosci Methods; 2012 Apr; 205(2):265-76. PubMed ID: 22269596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training and testing ERP-BCIs under different mental workload conditions.
    Ke Y; Wang P; Chen Y; Gu B; Qi H; Zhou P; Ming D
    J Neural Eng; 2016 Feb; 13(1):016007. PubMed ID: 26655346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern.
    Borirakarawin M; Punsawad Y
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affective Stimuli for an Auditory P300 Brain-Computer Interface.
    Onishi A; Takano K; Kawase T; Ora H; Kansaku K
    Front Neurosci; 2017; 11():522. PubMed ID: 28983235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An auditory brain-computer interface using virtual sound field.
    Gao H; Ouyang M; Zhang D; Hong B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4568-71. PubMed ID: 22255354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.