These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37975234)

  • 1. Successful reduction of indoor radon activity concentration via cross-ventilation: experimental data and CFD simulations.
    Altendorf D; Wienkenjohann H; Berger F; Dehnert J; Grünewald H; Naumov D; Trabitzsch R; Weiß H
    Isotopes Environ Health Stud; 2024 Mar; 60(1):74-89. PubMed ID: 37975234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-passive measurements and CFD based modelling for indoor radon dispersion study.
    Chauhan N; Chauhan RP
    J Environ Radioact; 2015 Jun; 144():57-61. PubMed ID: 25817925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of indoor radon distribution using measurements and CFD modeling.
    Chauhan N; Chauhan RP; Joshi M; Agarwal TK; Aggarwal P; Sahoo BK
    J Environ Radioact; 2014 Oct; 136():105-11. PubMed ID: 24929505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decentralised ventilation efficiency for indoor radon reduction considering different environmental parameters.
    Altendorf D; Grünewald H; Liu TL; Dehnert J; Trabitzsch R; Weiß H
    Isotopes Environ Health Stud; 2022 May; 58(2):195-213. PubMed ID: 35266853
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of results from indoor radon measurements using active and passive methods with those from mathematical modeling.
    Visnuprasad AK; Reby Roy KE; Jojo PJ; Sahoo BK
    Radiat Environ Biophys; 2019 Aug; 58(3):345-352. PubMed ID: 31250094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFD modelling of thoron and thoron progeny in the indoor environment.
    de With G; de Jong P
    Radiat Prot Dosimetry; 2011 May; 145(2-3):138-44. PubMed ID: 21447502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFD based simulation of thoron ((220)Rn) concentration in a delay chamber for mitigation application.
    Agarwal TK; Sahoo BK; Gaware JJ; Joshi M; Sapra BK
    J Environ Radioact; 2014 Oct; 136():16-21. PubMed ID: 24860913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Uniformity of the Indoor Radon Concentration under a Convective Mixing Mechanism.
    Spotar S; Ibrayev N; Uyzbayeva A; Atabayev J
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30545013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping indoor radon hazard in Germany: The geogenic component.
    Petermann E; Bossew P
    Sci Total Environ; 2021 Aug; 780():146601. PubMed ID: 33774294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of indoor air conditions on radon concentration in a detached house.
    Akbari K; Mahmoudi J; Ghanbari M
    J Environ Radioact; 2013 Feb; 116():166-73. PubMed ID: 23159846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor radon measurements in Turkey dwellings.
    Celebi N; Ataksor B; Taskın H; Bingoldag NA
    Radiat Prot Dosimetry; 2015 Dec; 167(4):626-32. PubMed ID: 25389360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Ventilation Efficiency as Simultaneous Control of Radon and Carbon Dioxide Levels in Indoor Air Applying Transient Modelling.
    Dovjak M; Vene O; Vaupotič J
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radon protection in apartments using a ventilation system wireless-controlled by radon activity concentration.
    Dehnert J; Altendorf D; Trabitzsch R; Grünewald H; Geisenhainer R; Oeser V; Streil T; Weber L; Schönherr B; Thomas J; Forner K; Alisch-Mark M; Weiss H
    J Radiol Prot; 2021 Aug; 41(3):. PubMed ID: 33910183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of the radioactive contamination due to radon in a granite processing plant and its decontamination by ventilation.
    Dieguez-Elizondo PM; Gil-Lopez T; O'Donohoe PG; Castejon-Navas J; Galvez-Huerta MA
    J Environ Radioact; 2017 Feb; 167():26-35. PubMed ID: 27876160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of indoor radon levels in the Midwest United States.
    Carrion-Matta A; Lawrence J; Kang CM; Wolfson JM; Li L; Vieira CLZ; Schwartz J; Demokritou P; Koutrakis P
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1515-1528. PubMed ID: 34233125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.
    Collignan B; Powaga E
    J Environ Radioact; 2019 Jan; 196():268-273. PubMed ID: 29174845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPATIAL DISTRIBUTION ANALYSIS AND DOSE ASSESSMENT OF THE RADON EMITTED FROM THE MONAZITE-CONTAINING MATTRESS IN GENERAL RESIDENTIAL SPACE BY CFD METHODS.
    Lee CW; Kim HR
    Radiat Prot Dosimetry; 2022 Feb; 198(1-2):8-15. PubMed ID: 35021229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. APPLICABILITY OF VENTILATION SYSTEMS FOR REDUCING THE INDOOR RADON CONCENTRATION.
    Jiránek M; Kačmaříková V
    Radiat Prot Dosimetry; 2020 Nov; 191(2):202-208. PubMed ID: 33089328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact from indoor air mixing on the thoron progeny concentration and attachment fraction.
    de With G; de Jong P
    J Environ Radioact; 2016 Jul; 158-159():56-63. PubMed ID: 27064565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WINDCATCHER VENTILATION COMPUTATION AND INDOOR 222RN CONCENTRATION IN TRADITIONAL ADOBE HOUSES.
    Abbasi A; Algethami M; Bawazeer O; Zakaly HMH
    Radiat Prot Dosimetry; 2021 Dec; 197(3-4):175-182. PubMed ID: 34959244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.