These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37975700)
21. Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications. Paglia G; Astarita G Methods Mol Biol; 2019; 1978():39-53. PubMed ID: 31119656 [TBL] [Abstract][Full Text] [Related]
22. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. McCabe JW; Hebert MJ; Shirzadeh M; Mallis CS; Denton JK; Walker TE; Russell DH Mass Spectrom Rev; 2021 May; 40(3):280-305. PubMed ID: 32608033 [TBL] [Abstract][Full Text] [Related]
23. Nontargeted Identification of D-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Okyem S; Romanova EV; Tai HC; Checco JW; Sweedler JV Methods Mol Biol; 2024; 2758():227-240. PubMed ID: 38549017 [TBL] [Abstract][Full Text] [Related]
24. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. Arndt JR; Wormwood Moser KL; Van Aken G; Doyle RM; Talamantes T; DeBord D; Maxon L; Stafford G; Fjeldsted J; Miller B; Sherman M J Am Soc Mass Spectrom; 2021 Aug; 32(8):2019-2032. PubMed ID: 33835810 [TBL] [Abstract][Full Text] [Related]
25. Analysis of Endogenous D-Amino Acid-Containing Peptides in Metazoa. Bai L; Sheeley S; Sweedler JV Bioanal Rev; 2009 Dec; 1(1):7-24. PubMed ID: 20490347 [TBL] [Abstract][Full Text] [Related]
26. Characterizing the D-Amino Acid Position in Peptide Epimers by Using Higher-Energy Collisional Dissociation Tandem Mass Spectrometry: A Case Study of Liraglutide. Chen YC; Wu HY; Lin LC; Chang CW; Liao PC Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338662 [TBL] [Abstract][Full Text] [Related]
27. Comprehensive Online Reversed-Phase × Chiral Two-Dimensional Liquid Chromatography-Mass Spectrometry with Data-Independent Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra-Acquisition for Untargeted Enantioselective Amino Acid Analysis. Karongo R; Horak J; Lämmerhofer M Anal Chem; 2022 Dec; 94(49):17063-17072. PubMed ID: 36442145 [TBL] [Abstract][Full Text] [Related]
28. Accurate Identification of Isomeric Glycans by Trapped Ion Mobility Spectrometry-Electronic Excitation Dissociation Tandem Mass Spectrometry. Wei J; Tang Y; Ridgeway ME; Park MA; Costello CE; Lin C Anal Chem; 2020 Oct; 92(19):13211-13220. PubMed ID: 32865981 [TBL] [Abstract][Full Text] [Related]
29. Performance of a High-Pressure Liquid Chromatography-Ion Mobility-Mass Spectrometry System for Metabolic Profiling. Zhang X; Kew K; Reisdorph R; Sartain M; Powell R; Armstrong M; Quinn K; Cruickshank-Quinn C; Walmsley S; Bokatzian S; Darland E; Rain M; Imatani K; Reisdorph N Anal Chem; 2017 Jun; 89(12):6384-6391. PubMed ID: 28528542 [TBL] [Abstract][Full Text] [Related]
30. Automated peak width measurements for targeted analysis of ion mobility unresolved species. Brantley MR; Pettit ME; Harper B; Brown B; Solouki T Anal Chim Acta; 2016 Oct; 941():49-60. PubMed ID: 27692378 [TBL] [Abstract][Full Text] [Related]
32. Resolving Power and Collision Cross Section Measurement Accuracy of a Prototype High-Resolution Ion Mobility Platform Incorporating Structures for Lossless Ion Manipulation. May JC; Leaptrot KL; Rose BS; Moser KLW; Deng L; Maxon L; DeBord D; McLean JA J Am Soc Mass Spectrom; 2021 Apr; 32(4):1126-1137. PubMed ID: 33734709 [TBL] [Abstract][Full Text] [Related]
33. Uncovering the behaviour of ions in the gas-phase to predict the ion mobility separation of isomeric steroid compounds. Hadavi D; Borzova M; Porta Siegel T; Honing M Anal Chim Acta; 2022 Apr; 1200():339617. PubMed ID: 35256146 [TBL] [Abstract][Full Text] [Related]
34. Enantiomer Differentiation of Amino Acid Stereoisomers by Structural Mass Spectrometry Using Noncovalent Trinuclear Copper Complexes. Zlibut E; May JC; McLean JA J Am Soc Mass Spectrom; 2022 Jun; 33(6):996-1002. PubMed ID: 35580025 [TBL] [Abstract][Full Text] [Related]
35. Software for analysing ion mobility mass spectrometry data to improve peptide identification. Xia D; Ghali F; Gaskell SJ; O'Cualain R; Sims PF; Jones AR Proteomics; 2012 Jun; 12(12):1912-6. PubMed ID: 22623287 [TBL] [Abstract][Full Text] [Related]
36. Combined use of post-ion mobility/collision-induced dissociation and chemometrics for b fragment ion analysis. Zekavat B; Miladi M; Becker C; Munisamy SM; Solouki T J Am Soc Mass Spectrom; 2013 Sep; 24(9):1355-65. PubMed ID: 23836377 [TBL] [Abstract][Full Text] [Related]
37. Improving glycan isomeric separation via metal ion incorporation for drift tube ion mobility-mass spectrometry. Xie C; Wu Q; Zhang S; Wang C; Gao W; Yu J; Tang K Talanta; 2020 May; 211():120719. PubMed ID: 32070621 [TBL] [Abstract][Full Text] [Related]
38. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Gray CJ; Thomas B; Upton R; Migas LG; Eyers CE; Barran PE; Flitsch SL Biochim Biophys Acta; 2016 Aug; 1860(8):1688-709. PubMed ID: 26854953 [TBL] [Abstract][Full Text] [Related]
39. Differentiation of prototropic ions in regioisomeric caffeoyl quinic acids by electrospray ion mobility mass spectrometry. Kuhnert N; Yassin GH; Jaiswal R; Matei MF; Grün CH Rapid Commun Mass Spectrom; 2015 Apr; 29(7):675-80. PubMed ID: 26212286 [TBL] [Abstract][Full Text] [Related]
40. Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections. Stow SM; Goodwin CR; Kliman M; Bachmann BO; McLean JA; Lybrand TP J Phys Chem B; 2014 Dec; 118(48):13812-20. PubMed ID: 25360896 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]