BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37975820)

  • 21. Novel innovations in cell and gene therapies for spinal cord injury.
    Zavvarian MM; Toossi A; Khazaei M; Hong J; Fehlings M
    F1000Res; 2020; 9():. PubMed ID: 32399196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury.
    Hart CG; Dyck SM; Kataria H; Alizadeh A; Nagakannan P; Thliveris JA; Eftekharpour E; Karimi-Abdolrezaee S
    Exp Neurol; 2020 Mar; 325():113163. PubMed ID: 31881217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treadmill training improves survival and differentiation of transplanted neural precursor cells after cervical spinal cord injury.
    Younsi A; Zheng G; Scherer M; Riemann L; Zhang H; Tail M; Hatami M; Skutella T; Unterberg A; Zweckberger K
    Stem Cell Res; 2020 May; 45():101812. PubMed ID: 32361314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord.
    Pfeifer K; Vroemen M; Caioni M; Aigner L; Bogdahn U; Weidner N
    Regen Med; 2006 Mar; 1(2):255-66. PubMed ID: 17465808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury.
    Kitagawa T; Nagoshi N; Okano H; Nakamura M
    Neurospine; 2022 Dec; 19(4):935-945. PubMed ID: 36597632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury.
    Nagoshi N; Okano H
    Cell Mol Life Sci; 2018 Mar; 75(6):989-1000. PubMed ID: 28993834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of induced pluripotent stem cell technologies in spinal cord injury.
    Nagoshi N; Okano H
    J Neurochem; 2017 Jun; 141(6):848-860. PubMed ID: 28199003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation.
    Curt A; Hsieh J; Schubert M; Hupp M; Friedl S; Freund P; Huber E; Pfyffer D; Sutter R; Jutzeler C; Wüthrich RP; Min K; Casha S; Fehlings MG; Guzman R
    Neurorehabil Neural Repair; 2020 Aug; 34(8):758-768. PubMed ID: 32698674
    [No Abstract]   [Full Text] [Related]  

  • 29. Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury.
    Kim DH; Cho HJ; Park CY; Cho MS; Kim DW
    Tissue Eng Regen Med; 2022 Dec; 19(6):1349-1358. PubMed ID: 36036887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model.
    Hwang I; Hahm SC; Choi KA; Park SH; Jeong H; Yea JH; Kim J; Hong S
    Cell Transplant; 2016; 25(3):593-607. PubMed ID: 26407027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of human urine-derived neural progenitor cells after spinal cord injury in rats.
    Liu A; Kang S; Yu P; Shi L; Zhou L
    Neurosci Lett; 2020 Sep; 735():135201. PubMed ID: 32585253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice.
    Ke Y; Chi L; Xu R; Luo C; Gozal D; Liu R
    Stem Cells; 2006 Apr; 24(4):1011-9. PubMed ID: 16339643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regenerative Therapies for Spinal Cord Injury.
    Ashammakhi N; Kim HJ; Ehsanipour A; Bierman RD; Kaarela O; Xue C; Khademhosseini A; Seidlits SK
    Tissue Eng Part B Rev; 2019 Dec; 25(6):471-491. PubMed ID: 31452463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.
    Emgård M; Piao J; Aineskog H; Liu J; Calzarossa C; Odeberg J; Holmberg L; Samuelsson EB; Bezubik B; Vincent PH; Falci SP; Seiger Å; Åkesson E; Sundström E
    Exp Neurol; 2014 Mar; 253():138-45. PubMed ID: 24412492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury.
    Liu T; Zhu W; Zhang X; He C; Liu X; Xin Q; Chen K; Wang H
    Biomed Res Int; 2022; 2022():5079153. PubMed ID: 35978649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury.
    Zholudeva LV; Iyer N; Qiang L; Spruance VM; Randelman ML; White NW; Bezdudnaya T; Fischer I; Sakiyama-Elbert SE; Lane MA
    J Neurotrauma; 2018 Dec; 35(24):2883-2903. PubMed ID: 29873284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct neuronal differentiation of neural stem cells for spinal cord injury repair.
    Xue W; Fan C; Chen B; Zhao Y; Xiao Z; Dai J
    Stem Cells; 2021 Aug; 39(8):1025-1032. PubMed ID: 33657255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury.
    Gong Z; Xia K; Xu A; Yu C; Wang C; Zhu J; Huang X; Chen Q; Li F; Liang C
    Curr Stem Cell Res Ther; 2020; 15(4):321-331. PubMed ID: 31441733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury.
    Dugan EA; Jergova S; Sagen J
    Exp Neurol; 2020 May; 327():113208. PubMed ID: 31962127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.