These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37976273)

  • 1. Correction: Detection and measurement of butterfly eyespot and spot patterns using convolutional neural networks.
    Cunha C; Narotamo H; Monteiro A; Silveira M
    PLoS One; 2023; 18(11):e0294793. PubMed ID: 37976273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and measurement of butterfly eyespot and spot patterns using convolutional neural networks.
    Cunha C; Narotamo H; Monteiro A; Silveira M
    PLoS One; 2023; 18(2):e0280998. PubMed ID: 36780440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.
    Iwata M; Otaki JM
    Springerplus; 2016; 5(1):1287. PubMed ID: 27547662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: Multi-view classification with convolutional neural networks.
    PLOS ONE Staff
    PLoS One; 2021; 16(4):e0250190. PubMed ID: 33831129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: Acral melanoma detection using a convolutional neural network for dermoscopy images.
    Yu C; Yang S; Kim W; Jung J; Chung KY; Lee SW; Oh B
    PLoS One; 2018; 13(4):e0196621. PubMed ID: 29689095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic recognition and measurement of butterfly eyespot patterns.
    Silveira M; Monteiro A
    Biosystems; 2009 Feb; 95(2):130-6. PubMed ID: 18955106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination.
    Marcus JM; Evans TM
    Biosystems; 2008 Sep; 93(3):250-5. PubMed ID: 18586070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya.
    Otaki JM
    Insects; 2018 Dec; 9(4):. PubMed ID: 30572627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distal-less induces elemental color patterns in Junonia butterfly wings.
    Dhungel B; Ohno Y; Matayoshi R; Iwasaki M; Taira W; Adhikari K; Gurung R; Otaki JM
    Zoological Lett; 2016; 2():4. PubMed ID: 26937287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction: Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.
    PLOS ONE Staff
    PLoS One; 2018; 13(3):e0194956. PubMed ID: 29561899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction: Artificial neural networks reveal individual differences in metacognitive monitoring of memory.
    Zakrzewski AC; Wisniewski MG; Williams HL; Berry JM
    PLoS One; 2019; 14(9):e0222644. PubMed ID: 31513687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.
    Roy A; Bernier RA; Wang J; Benson M; French JJ; Good DC; Hillary FG
    PLoS One; 2018; 13(10):e0206005. PubMed ID: 30312347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.
    Jamei M; Nisnevich A; Wetchler E; Sudat S; Liu E; Upadhyaya K
    PLoS One; 2018; 13(5):e0197793. PubMed ID: 29772004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction: Modelling innovation performance of European regions using multi-output neural networks.
    Hajek P; Henriques R
    PLoS One; 2017; 12(12):e0189746. PubMed ID: 29220403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Butterfly wing pattern evolution is associated with changes in a Notch/Distal-less temporal pattern formation process.
    Reed RD; Serfas MS
    Curr Biol; 2004 Jul; 14(13):1159-66. PubMed ID: 15242612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction to: Detection and analysis of wheat spikes using Convolutional Neural Networks.
    Hasan MM; Chopin JP; Laga H; Miklavcic SJ
    Plant Methods; 2019; 15():27. PubMed ID: 30930954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects.
    San Kim T; Kyung Lee W; Young Sohn S
    PLoS One; 2022; 17(3):e0266221. PubMed ID: 35324996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks.
    Becker AK; Ittermann T; Dörr M; Felix SB; Nauck M; Teumer A; Völker U; Völzke H; Kaderali L; Nath N
    PLoS One; 2023; 18(11):e0294489. PubMed ID: 37948441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificially induced changes of butterfly wing colour patterns: dynamic signal interactions in eyespot development.
    Otaki JM
    Sci Rep; 2011; 1():111. PubMed ID: 22355628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of the eyespots in butterfly wings.
    Liao KL; Chang WC; Marcus JM; Wang JN
    J Theor Biol; 2021 Dec; 531():110898. PubMed ID: 34508757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.