These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37976415)
61. Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis. Han B; Wang H; Wang C; Wu H; Zhou W; Chen B; Jiang J J Am Chem Soc; 2019 Jun; 141(22):8737-8740. PubMed ID: 31117661 [TBL] [Abstract][Full Text] [Related]
62. Three Carbazole-Based Polymers as Potential Anodically Coloring Materials for High-Contrast Electrochromic Devices. Su YS; Wu TY Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970962 [TBL] [Abstract][Full Text] [Related]
63. A terpyridine based hydrogel system for reversible transmissive-to-dark electrochromism and bright-to-quenched electrofluorochromism. Halder S; Roy S; Dixit M; Chakraborty C Chem Commun (Camb); 2022 Jul; 58(60):8368-8371. PubMed ID: 35792067 [TBL] [Abstract][Full Text] [Related]
64. Coexistence of Electrochromism and Bipolar Nonvolatile Memory in a Single Viologen. Parashar RK; Kandpal S; Pal N; Manna D; Pal BN; Kumar R; Mondal PC ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37883131 [TBL] [Abstract][Full Text] [Related]
65. Fabrication of Flexible Electrochromic Devices with Degradable and Fully Recyclable Features. Xue R; Liu Y; Ning L; Yu Z; Jia X; Wang R; Qiu H; Xu Y; Li Z; Liu G; Wang C ACS Biomater Sci Eng; 2022 Mar; 8(3):1320-1328. PubMed ID: 35184561 [TBL] [Abstract][Full Text] [Related]
66. Low-Temperature Deposition of Transparent Conducting Films Applied to Flexible Electrochromic Devices. Li KD; Chen PW; Chang KS Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501052 [TBL] [Abstract][Full Text] [Related]
67. Facile Approach of Porous Electrochromic Polyamide/ZrO Chiu YW; Pai MH; Liou GS ACS Appl Mater Interfaces; 2020 Aug; 12(31):35273-35281. PubMed ID: 32664729 [TBL] [Abstract][Full Text] [Related]
68. Self-Assembled Polyaniline/Ti Lin T; Liu W; Yan B; Li J; Lin Y; Zhao Y; Shi Z; Chen S Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835720 [TBL] [Abstract][Full Text] [Related]
69. Porous and nanowire-structured NiO/AgNWs composite electrodes for significantly-enhanced supercapacitive and electrochromic performances. Zhang M; Xu X; Gu Y; Cheng X; Hu J; Xiong K; Jiang Y; Fan T; Xu J Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33770771 [TBL] [Abstract][Full Text] [Related]
70. Influence of ITO electrode on the electrochromic performance outcomes of viologen-functionalized polyhedral oligomeric silsesquioxanes. Pande GK; Sun F; Kim DY; Eom JH; Park JS RSC Adv; 2022 Apr; 12(20):12746-12752. PubMed ID: 35480344 [TBL] [Abstract][Full Text] [Related]
71. An Ultrastable and Easily Regenerated Hydrogen-Bonded Organic Molecular Framework with Permanent Porosity. Hu F; Liu C; Wu M; Pang J; Jiang F; Yuan D; Hong M Angew Chem Int Ed Engl; 2017 Feb; 56(8):2101-2104. PubMed ID: 28090721 [TBL] [Abstract][Full Text] [Related]
72. Fabrication of Lanthanide-Functionalized Hydrogen-Bonded Organic Framework Films for Ratiometric Temperature Sensing by Electrophoretic Deposition. Feng JF; Yan XY; Ji ZY; Liu TF; Cao R ACS Appl Mater Interfaces; 2020 Jul; 12(26):29854-29860. PubMed ID: 32483962 [TBL] [Abstract][Full Text] [Related]
73. Amorphous Mixed-Vanadium-Tungsten Oxide Films as Optically Passive Ion Storage Materials for Solid-State Near-Infrared Electrochromic Devices. Wang J; Zhou Y; Zhao W; Niu Y; Mao Y; Cheng W ACS Appl Mater Interfaces; 2023 Feb; 15(5):7120-7128. PubMed ID: 36716357 [TBL] [Abstract][Full Text] [Related]
74. A Microporous Hydrogen Bonded Organic Framework for Highly Selective Separation of Carbon Dioxide over Acetylene. Li Y; Wang X; Zhang H; He L; Huang J; Wei W; Yuan Z; Xiong Z; Chen H; Xiang S; Chen B; Zhang Z Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202311419. PubMed ID: 37563095 [TBL] [Abstract][Full Text] [Related]
75. Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation. Song X; Wang C; Gao X; Wang Y; Xu R; Wang J; Li P Molecules; 2023 Feb; 28(5):. PubMed ID: 36903421 [TBL] [Abstract][Full Text] [Related]
76. Facile Fabrication of Triphenylamine-Based Redox-Active Nanocomposites by a Sol-Gel Method: Enhanced Electrochromic Response Capability and Stability Performance. Fan YZ; Chen CH; Liou GS Macromol Rapid Commun; 2019 Jul; 40(13):e1900118. PubMed ID: 31038774 [TBL] [Abstract][Full Text] [Related]
77. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755 [TBL] [Abstract][Full Text] [Related]
78. Applications of Copolymers Consisting of 2,6-di(9H-carbazol-9-yl)pyridine and 3,6-di(2-thienyl)carbazole Units as Electrodes in Electrochromic Devices. Kuo CW; Chang JC; Huang YT; Chang JK; Lee LT; Wu TY Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995740 [TBL] [Abstract][Full Text] [Related]
79. Electrochromic Properties of Reactive Magnetron Sputtered WO₃ Thin Films Prepared by Neon as Sputter Gas. Uday Kumar K; Subrahmanyam A J Nanosci Nanotechnol; 2020 Jun; 20(6):3724-3733. PubMed ID: 31748070 [TBL] [Abstract][Full Text] [Related]
80. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. Roy S; Chakraborty C ACS Appl Mater Interfaces; 2020 Aug; 12(31):35181-35192. PubMed ID: 32657568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]