These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 37976429)
21. An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning. Wang X; Deng Y; Chen X; Jiang P; Cheung YK; Yu H Microsyst Nanoeng; 2021; 7():99. PubMed ID: 34900333 [TBL] [Abstract][Full Text] [Related]
22. Cellulose paper-based humidity power generator with high open circuit voltage based on zinc-air battery structure. Huang L; Tang Y; Liu W; Hu Q; Wei X Carbohydr Polym; 2024 Feb; 326():121649. PubMed ID: 38142083 [TBL] [Abstract][Full Text] [Related]
23. Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. Wu J; Wu Z; Ding H; Wei Y; Yang X; Li Z; Yang BR; Liu C; Qiu L; Wang X ACS Appl Mater Interfaces; 2019 Nov; 11(46):43383-43392. PubMed ID: 31709789 [TBL] [Abstract][Full Text] [Related]
24. Ferroelectric Polarization and Oxygen Vacancy Synergistically Induced an Ultrasensitive and Fast Humidity Sensor for Multifunctional Applications. Chen X; Liu C; Hua Z; Ma N ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36285769 [TBL] [Abstract][Full Text] [Related]
25. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring. Tang H; Li Y; Ye H; Hu F; Gao C; Tao L; Tu T; Gou G; Chen X; Fan X; Ren T; Zhang G Nanotechnology; 2020 Jan; 31(5):055501. PubMed ID: 31484166 [TBL] [Abstract][Full Text] [Related]
26. A fast response and highly sensitive flexible humidity sensor based on a nanocomposite film of MoS Ge G; Ke N; Ma H; Ding J; Zhang W; Fan X Nanoscale; 2024 Oct; 16(38):17804-17816. PubMed ID: 39158201 [TBL] [Abstract][Full Text] [Related]
27. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Su Y; Liu Y; Li W; Xiao X; Chen C; Lu H; Yuan Z; Tai H; Jiang Y; Zou J; Xie G; Chen J Mater Horiz; 2023 Mar; 10(3):842-851. PubMed ID: 36689243 [TBL] [Abstract][Full Text] [Related]
28. Nylon Fabric/GO Based Self-Powered Humidity Sensor Based on the Galvanic Cell Principle with High Air Permeability and Rapid-Response. Lu W; Zhang Q; Liu N; Lei D; Ren Z; Yin J; Jia P; Gao Y Small; 2024 Mar; 20(10):e2306463. PubMed ID: 37899294 [TBL] [Abstract][Full Text] [Related]
29. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Lan L; Le X; Dong H; Xie J; Ying Y; Ping J Biosens Bioelectron; 2020 Oct; 165():112360. PubMed ID: 32729493 [TBL] [Abstract][Full Text] [Related]
30. Facile and Cost-Effective Fabrication of Highly Sensitive, Fast-Response Flexible Humidity Sensors Enabled by Laser-Induced Graphene. Liu S; Chen R; Chen R; Jiang C; Zhang C; Chen D; Zhou W; Chen S; Luo T ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38049206 [TBL] [Abstract][Full Text] [Related]
31. High-performance paper-based humidity sensors with Nafion/AgNWs hybrid electrodes. Ji Y; Tang G; Zhao C; Zhao X; Mei D; Pan Y; Wang Y RSC Adv; 2023 Sep; 13(41):28613-28622. PubMed ID: 37780734 [TBL] [Abstract][Full Text] [Related]
32. Fast Response Facile Fabricated IDE-Based Ultra-sensitive Humidity Sensor for Medical Applications. Ullah A; Zulfiqar MH; Khan MA; Zubair M; Mehmood MQ; Massoud Y ACS Omega; 2023 May; 8(19):16842-16850. PubMed ID: 37214719 [TBL] [Abstract][Full Text] [Related]
33. Humidity Sensor Composed of Laser-Induced Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin Moisture. Fei X; Huang J; Shi W Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571567 [TBL] [Abstract][Full Text] [Related]
34. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence. Yang Z; Zhu Z; Chen Z; Liu M; Zhao B; Liu Y; Cheng Z; Wang S; Yang W; Yu T Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960515 [TBL] [Abstract][Full Text] [Related]
35. Flexible and Transparent Cellulose-Based Ionic Film as a Humidity Sensor. Wang Y; Zhang L; Zhou J; Lu A ACS Appl Mater Interfaces; 2020 Feb; 12(6):7631-7638. PubMed ID: 31961643 [TBL] [Abstract][Full Text] [Related]
36. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method. Pan T; Yu Z; Huang F; Yao H; Hu G; Tang C; Gu J ACS Appl Mater Interfaces; 2023 Jun; 15(23):28248-28257. PubMed ID: 37262400 [TBL] [Abstract][Full Text] [Related]
37. Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring. Chen X; Ma K; Ou J; Mo D; Lian H; Li X; Cui Z; Luo Y Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622878 [TBL] [Abstract][Full Text] [Related]
38. Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. Huo Y; Bu M; Ma Z; Sun J; Yan Y; Xiu K; Wang Z; Hu N; Li YF J Colloid Interface Sci; 2022 Feb; 607(Pt 2):2010-2018. PubMed ID: 34798709 [TBL] [Abstract][Full Text] [Related]
39. A nanocellulose-based flexible multilayer sensor with high sensitivity to humidity and strain response for detecting human motion and respiration. Li X; Xiao S; Lao Y; Li D; Wei Q; Ye L; Lu S Int J Biol Macromol; 2024 May; 266(Pt 1):131004. PubMed ID: 38521327 [TBL] [Abstract][Full Text] [Related]
40. Self-powered humidity sensors based on zero-dimensional perovskite-like structures with fast response and high stability. Sharma SK; Tiwari A; Arjumand M; Yella A Nanoscale; 2024 Jun; 16(23):11028-11037. PubMed ID: 38804981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]