These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37976577)

  • 21. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.
    Moody AS; Sharma B
    ACS Chem Neurosci; 2018 Jun; 9(6):1380-1387. PubMed ID: 29601719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly catalysis MOF
    Shi J; Li J; Liang A; Jiang Z
    Talanta; 2022 Aug; 245():123468. PubMed ID: 35405447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bimetallic AgNPs@dopamine modified-halloysite nanotubes-AuNPs for adenine determination using surface-enhanced Raman scattering.
    Lai H; Zhang H; Li G; Hu Y
    Mikrochim Acta; 2021 Mar; 188(4):127. PubMed ID: 33733686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi
    Razavi M; Barras A; Ifires M; Swaidan A; Khoshkam M; Szunerits S; Kompany-Zareh M; Boukherroub R
    J Colloid Interface Sci; 2022 May; 613():384-395. PubMed ID: 35042036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SERRS labelled beads for multiplex detection.
    McCabe AF; Eliasson C; Prasath RA; Hernandez-Santana A; Stevenson L; Apple I; Cormack PA; Graham D; Smith WE; Corish P; Lipscomb SJ; Holland ER; Prince PD
    Faraday Discuss; 2006; 132():303-8; discussion 309-19. PubMed ID: 16833125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.
    Qi G; Wang Y; Zhang B; Sun D; Fu C; Xu W; Xu S
    Anal Bioanal Chem; 2016 Oct; 408(26):7513-20. PubMed ID: 27518716
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Liu Y; Zhao W; Gao Y; Zhuo Q; Chu T; Huang W; Zheng Y; Li Y
    RSC Adv; 2023 Oct; 13(44):31067-31076. PubMed ID: 37881765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor.
    Ando RA; Pieczonka NP; Santos PS; Aroca RF
    Phys Chem Chem Phys; 2009 Sep; 11(34):7505-8. PubMed ID: 19690726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A sensitive surface-enhanced Raman scattering enzyme-catalyzed immunoassay of respiratory syncytial virus.
    Zhan L; Zhen SJ; Wan XY; Gao PF; Huang CZ
    Talanta; 2016; 148():308-12. PubMed ID: 26653454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Silver Nanoparticles in Seawater Using Surface-Enhanced Raman Scattering.
    Quarato M; Pinheiro I; Vieira A; Espiña B; Rodriguez-Lorenzo L
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indirect surface-enhanced Raman scattering assay of insulin-like growth factor 2 receptor protein by combining the aptamer modified gold substrate and silver nanoprobes.
    Liu Y; Tian H; Chen X; Liu W; Xia K; Huang J; de la Chapelle ML; Huang G; Zhang Y; Fu W
    Mikrochim Acta; 2020 Feb; 187(3):160. PubMed ID: 32040773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational Selectivity of Merocyanine on Nanostructured Silver Films: Surface Enhanced Resonance Raman Scattering (SERRS) and Density Functional Theoretical (DFT) Study.
    Das A; Chadha R; Mishra A; Maiti N
    Front Chem; 2022; 10():902585. PubMed ID: 35769442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems.
    Kitahama Y; Ozaki Y
    Analyst; 2016 Aug; 141(17):5020-36. PubMed ID: 27381192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Tb(III) fluorescence on gelatin-coated silver nanoparticles in dopamine detection.
    Sun J; Feng A; Wu X; Che X; Zhou W
    Talanta; 2021 Aug; 231():122334. PubMed ID: 33965015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases.
    Chen L; Fu X; Li J
    Nanoscale; 2013 Jul; 5(13):5905-11. PubMed ID: 23703031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative analysis of methyl green using surface-enhanced resonance Raman scattering.
    Shadi IT; Cheung W; Goodacre R
    Anal Bioanal Chem; 2009 Aug; 394(7):1833-8. PubMed ID: 19544054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine.
    Chen Q; Liang C; Zhang X; Huang Y
    Talanta; 2018 May; 182():476-483. PubMed ID: 29501181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apta-sensor for selective determination of dopamine using chitosan-stabilized Prussian blue nanoparticles.
    Lee HB; Son SE; Seong GH
    J Mater Chem B; 2023 Aug; 11(30):7217-7227. PubMed ID: 37427764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple enzyme-free SERS sensor for the rapid and sensitive detection of hydrogen peroxide in food.
    Li Y; Wang Y; Fu C; Wu Y; Cao H; Shi W; Jung YM
    Analyst; 2020 Jan; 145(2):607-612. PubMed ID: 31782435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.