These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37976615)

  • 1. Automatic segmentation of vocal tract articulators in real-time magnetic resonance imaging.
    Ribeiro V; Isaieva K; Leclere J; Felblinger J; Vuissoz PA; Laprie Y
    Comput Methods Programs Biomed; 2024 Jan; 243():107907. PubMed ID: 37976615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech.
    Ruthven M; Miquel ME; King AP
    Comput Methods Programs Biomed; 2021 Jan; 198():105814. PubMed ID: 33197740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic vocal tract landmark localization from midsagittal MRI data.
    Eslami M; Neuschaefer-Rube C; Serrurier A
    Sci Rep; 2020 Jan; 10(1):1468. PubMed ID: 32001739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time speech MRI datasets with corresponding articulator ground-truth segmentations.
    Ruthven M; Peplinski AM; Adams DM; King AP; Miquel ME
    Sci Data; 2023 Dec; 10(1):860. PubMed ID: 38042857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Multiple Articulator Segmentation in Dynamic Speech MRI Using a Protocol Adaptive Stacked Transfer Learning U-NET Model.
    Erattakulangara S; Kelat K; Meyer D; Priya S; Lingala SG
    Bioengineering (Basel); 2023 May; 10(5):. PubMed ID: 37237693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Sensorimotor Cortex Control of Directly Measured Vocal Tract Movements during Vowel Production.
    Conant DF; Bouchard KE; Leonard MK; Chang EF
    J Neurosci; 2018 Mar; 38(12):2955-2966. PubMed ID: 29439164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of inter-speaker articulatory variability: A two-level multi-speaker modelling approach based on MRI data.
    Serrurier A; Badin P; Lamalle L; Neuschaefer-Rube C
    J Acoust Soc Am; 2019 Apr; 145(4):2149. PubMed ID: 31046321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the Edge: Markerless Pose Estimation of Speech Articulators from Ultrasound and Camera Images Using DeepLabCut.
    Wrench A; Balch-Tomes J
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic off-resonance correction for spiral real-time MRI of speech.
    Lim Y; Lingala SG; Narayanan SS; Nayak KS
    Magn Reson Med; 2019 Jan; 81(1):234-246. PubMed ID: 30058147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing.
    Echternach M; Burk F; Burdumy M; Traser L; Richter B
    PLoS One; 2016; 11(4):e0153792. PubMed ID: 27096935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic 3-D visualization of vocal tract shaping during speech.
    Zhu Y; Kim YC; Proctor MI; Narayanan SS; Nayak KS
    IEEE Trans Med Imaging; 2013 May; 32(5):838-48. PubMed ID: 23204279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.