These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37976876)
1. Algae-derived biochar nanozyme array for discrimination and detection of multiple pesticides in soil, water and food. Yue N; Wu J; Qi W; Su R Food Chem; 2024 Apr; 438():137946. PubMed ID: 37976876 [TBL] [Abstract][Full Text] [Related]
2. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Zhu Y; Wu J; Han L; Wang X; Li W; Guo H; Wei H Anal Chem; 2020 Jun; 92(11):7444-7452. PubMed ID: 32363854 [TBL] [Abstract][Full Text] [Related]
3. A colorimetric sensor array based on nanoceria crosslinked and heteroatom-doped graphene oxide nanoribbons for the detection and discrimination of multiple pesticides. Tai S; Wang J; Sun F; Pan Q; Peng C; Wang Z Anal Chim Acta; 2023 Dec; 1283():341929. PubMed ID: 37977774 [TBL] [Abstract][Full Text] [Related]
4. Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array. Tian T; Song D; Zhang L; Huang H; Li Y J Hazard Mater; 2024 May; 469():133847. PubMed ID: 38422731 [TBL] [Abstract][Full Text] [Related]
5. [Progress in preparation of plant biomass-derived biochar and application in pesticide residues field]. Zhang X; Zhen D; Liu F; Peng Q; Wang Z Se Pu; 2022 Jun; 40(6):499-508. PubMed ID: 35616195 [TBL] [Abstract][Full Text] [Related]
6. A novel strategy for identification of pesticides in different categories by concentration-independent model based on a nanozyme with multienzyme-like activities. Song D; Lei L; Tian T; Yang X; Wang L; Li Y; Huang H Biosens Bioelectron; 2023 Oct; 237():115458. PubMed ID: 37311405 [TBL] [Abstract][Full Text] [Related]
7. Transition metal-doped germanium oxide nanozyme with enhanced enzyme-like activity for rapid detection of pesticide residues in water samples. Zeng Z; Wang X; Yang T; Li Y; Liu X; Zhang P; Feng B; Qing T Anal Chim Acta; 2023 Mar; 1245():340861. PubMed ID: 36737136 [TBL] [Abstract][Full Text] [Related]
8. Smartphone-assisted sensor array constructed by copper-based laccase-like nanozymes for specific identification and discrimination of organophosphorus pesticides. Song D; Tian T; Yang X; Wang L; Sun Y; Li Y; Huang H Food Chem; 2023 Oct; 424():136477. PubMed ID: 37263094 [TBL] [Abstract][Full Text] [Related]
9. A peroxidase-like activity-based colorimetric sensor array of noble metal nanozymes to discriminate heavy metal ions. Noreldeen HAA; Yang L; Guo XY; He SB; Peng HP; Deng HH; Chen W Analyst; 2021 Dec; 147(1):101-108. PubMed ID: 34846387 [TBL] [Abstract][Full Text] [Related]
10. Glutathione‑iron hybrid nanozyme-based colorimetric sensor for specific and stable detection of thiram pesticide on fruit juices. Yan X; Zou R; Lin Q; Ma Y; Li A; Sun X; Lu G; Li H Food Chem; 2024 Sep; 452():139569. PubMed ID: 38744131 [TBL] [Abstract][Full Text] [Related]
11. Accelerated and precise identification of antioxidants and pesticides using a smartphone-based colorimetric sensor array. Luan T; Zhang Y; Song Z; Zhou Y; Ma CB; Lu L; Du Y Talanta; 2024 Sep; 277():126275. PubMed ID: 38810380 [TBL] [Abstract][Full Text] [Related]
12. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Liu S; Zhou J; Yuan X; Xiong J; Zong MH; Wu X; Lou WY Food Chem; 2024 Jan; 432():137272. PubMed ID: 37657347 [TBL] [Abstract][Full Text] [Related]
13. Nanozymes sensor array for discrimination and intelligent sensing of phenolic acids in food. Jing W; Yang Y; Shi Q; Xu J; Xing G; Dai Y; Liu F Food Chem; 2024 Aug; 450():139326. PubMed ID: 38615530 [TBL] [Abstract][Full Text] [Related]
14. Nanozyme colorimetric sensor array based on monatomic cobalt for the discrimination of sulfur-containing metal salts. Wang H; Wu F; Wu L; Guan J; Niu X J Hazard Mater; 2023 Aug; 456():131643. PubMed ID: 37236116 [TBL] [Abstract][Full Text] [Related]
15. A review of pesticides sorption in biochar from maize, rice, and wheat residues: Current status and challenges for soil application. Ogura AP; Lima JZ; Marques JP; Massaro Sousa L; Rodrigues VGS; Espíndola ELG J Environ Manage; 2021 Dec; 300():113753. PubMed ID: 34537561 [TBL] [Abstract][Full Text] [Related]
16. Gold alloy-based nanozyme sensor arrays for biothiol detection. Lin J; Wang Q; Wang X; Zhu Y; Zhou X; Wei H Analyst; 2020 Jun; 145(11):3916-3921. PubMed ID: 32301943 [TBL] [Abstract][Full Text] [Related]
17. Nanozyme-Participated Biosensing of Pesticides and Cholinesterases: A Critical Review. Zhu H; Liu P; Xu L; Li X; Hu P; Liu B; Pan J; Yang F; Niu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677338 [TBL] [Abstract][Full Text] [Related]
18. Fermented biochar has a markedly different effect on fate of pesticides in soil than compost, straw, and a mixed biochar-product. Siedt M; Vonhoegen D; Smith KEC; Roß-Nickoll M; van Dongen JT; Schäffer A Chemosphere; 2023 Dec; 344():140298. PubMed ID: 37758091 [TBL] [Abstract][Full Text] [Related]
19. Developments in biochar application for pesticide remediation: Current knowledge and future research directions. Varjani S; Kumar G; Rene ER J Environ Manage; 2019 Feb; 232():505-513. PubMed ID: 30502618 [TBL] [Abstract][Full Text] [Related]
20. LTP-assisted fabrication of laccase-like Cu-MOF nanozyme-encoded array sensor for identification and intelligent sensing of bioactive components in food. Liu C; Huang Q Biosens Bioelectron; 2025 Jan; 267():116784. PubMed ID: 39288708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]