These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37977110)

  • 1. How neural representations of newly learnt faces change over time: Event-related brain potential evidence for overnight consolidation.
    Wiese H; Popova T; Schipper M; Zakriev D; Burton AM; Young AW
    Cortex; 2024 Feb; 171():13-25. PubMed ID: 37977110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How quickly do we learn new faces in everyday life? Neurophysiological evidence for face identity learning after a brief real-life encounter.
    Popova T; Wiese H
    Cortex; 2023 Feb; 159():205-216. PubMed ID: 36640620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing familiarity during the first eight months of knowing a person: A longitudinal EEG study on face and identity learning.
    Popova T; Wiese H
    Cortex; 2023 Aug; 165():26-37. PubMed ID: 37245406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N250 ERP correlates of the acquisition of face representations across different images.
    Kaufmann JM; Schweinberger SR; Burton AM
    J Cogn Neurosci; 2009 Apr; 21(4):625-41. PubMed ID: 18702593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The time it takes to truly know someone: Neurophysiological correlates of face and identity learning during the first two years.
    Popova T; Wiese H
    Biol Psychol; 2022 Apr; 170():108312. PubMed ID: 35288213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting a viewer's familiarity with a face: Evidence from event-related brain potentials and classifier analyses.
    Wiese H; Anderson D; Beierholm U; Tüttenberg SC; Young AW; Burton AM
    Psychophysiology; 2022 Jan; 59(1):e13950. PubMed ID: 34587297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-related potentials reveal the development of stable face representations from natural variability.
    Andrews S; Burton AM; Schweinberger SR; Wiese H
    Q J Exp Psychol (Hove); 2017 Aug; 70(8):1620-1632. PubMed ID: 27252094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revisiting the earliest electrophysiological correlate of familiar face recognition.
    Huang W; Wu X; Hu L; Wang L; Ding Y; Qu Z
    Int J Psychophysiol; 2017 Oct; 120():42-53. PubMed ID: 28684327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences between high and low performers in face recognition in electrophysiological correlates of face familiarity and distance-to-norm.
    Schroeger A; Ficco L; Wuttke SJ; Kaufmann JM; Schweinberger SR
    Biol Psychol; 2023 Sep; 182():108654. PubMed ID: 37549807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Familiarity is familiarity is familiarity: Event-related brain potentials reveal qualitatively similar representations of personally familiar and famous faces.
    Wiese H; Hobden G; Siilbek E; Martignac V; Flack TR; Ritchie KL; Young AW; Burton AM
    J Exp Psychol Learn Mem Cogn; 2022 Aug; 48(8):1144-1164. PubMed ID: 34672660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning own- and other-race facial identities: Testing implicit recognition with event-related brain potentials.
    Tüttenberg SC; Wiese H
    Neuropsychologia; 2019 Nov; 134():107218. PubMed ID: 31580879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological markers of covert face recognition in developmental prosopagnosia.
    Eimer M; Gosling A; Duchaine B
    Brain; 2012 Feb; 135(Pt 2):542-54. PubMed ID: 22271660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Later but not early stages of familiar face recognition depend strongly on attentional resources: Evidence from event-related brain potentials.
    Wiese H; Ingram BT; Elley ML; Tüttenberg SC; Burton AM; Young AW
    Cortex; 2019 Nov; 120():147-158. PubMed ID: 31310964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning.
    Schulz C; Kaufmann JM; Walther L; Schweinberger SR
    Neuropsychologia; 2012 Aug; 50(10):2426-34. PubMed ID: 22750120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putting a name to a face: the role of name labels in the formation of face memories.
    Gordon I; Tanaka JW
    J Cogn Neurosci; 2011 Nov; 23(11):3280-93. PubMed ID: 21557646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The faces you remember: caricaturing shape facilitates brain processes reflecting the acquisition of new face representations.
    Kaufmann JM; Schweinberger SR
    Biol Psychol; 2012 Jan; 89(1):21-33. PubMed ID: 21925235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human brain potential correlates of repetition priming in face and name recognition.
    Schweinberger SR; Pickering EC; Burton AM; Kaufmann JM
    Neuropsychologia; 2002; 40(12):2057-73. PubMed ID: 12208003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The P200 predominantly reflects distance-to-norm in face space whereas the N250 reflects activation of identity-specific representations of known faces.
    Wuttke SJ; Schweinberger SR
    Biol Psychol; 2019 Jan; 140():86-95. PubMed ID: 30529289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetition effects in human ERPs to faces.
    Schweinberger SR; Neumann MF
    Cortex; 2016 Jul; 80():141-53. PubMed ID: 26672902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces.
    Kaufmann JM; Schweinberger SR
    Brain Res; 2008 Sep; 1228():177-88. PubMed ID: 18634766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.