These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37977476)
1. Bioethanol lignin-rich residue from olive stones for electrospun nanostructures development and castor oil structuring. Rubio-Valle JF; Martín-Alfonso JE; Eugenio ME; Ibarra D; Oliva JM; Manzanares P; Valencia C Int J Biol Macromol; 2024 Jan; 255():128042. PubMed ID: 37977476 [TBL] [Abstract][Full Text] [Related]
2. Electrospun lignin-PVP nanofibers and their ability for structuring oil. Borrego M; Martín-Alfonso JE; Sánchez MC; Valencia C; Franco JM Int J Biol Macromol; 2021 Jun; 180():212-221. PubMed ID: 33737178 [TBL] [Abstract][Full Text] [Related]
3. Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. Borrero-López AM; Valencia C; Ibarra D; Ballesteros I; Franco JM Int J Biol Macromol; 2022 Jan; 195():412-423. PubMed ID: 34871659 [TBL] [Abstract][Full Text] [Related]
4. Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil. Borrego M; Martín-Alfonso JE; Valencia C; Sánchez MC; Franco JM Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365734 [TBL] [Abstract][Full Text] [Related]
5. Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. García-Fuentevilla L; Rubio-Valle JF; Martín-Sampedro R; Valencia C; Eugenio ME; Ibarra D Int J Biol Macromol; 2022 Aug; 214():554-567. PubMed ID: 35752340 [TBL] [Abstract][Full Text] [Related]
6. Exploring Cellulose Triacetate Nanofibers as Sustainable Structuring Agent for Castor Oil: Formulation Design and Rheological Insights. Martín-Alfonso MA; Rubio-Valle JF; Estrada-Villegas GM; Sánchez-Domínguez M; Martín-Alfonso JE Gels; 2024 Mar; 10(4):. PubMed ID: 38667640 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and Characterization of Lignin/Dendrimer Electrospun Blended Fiber Mats. Akbari S; Bahi A; Farahani A; Milani AS; Ko F Molecules; 2021 Jan; 26(3):. PubMed ID: 33498227 [TBL] [Abstract][Full Text] [Related]
8. Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: binding of water, oil, bile acids, and glucose. Rodríguez-Gutiérrez G; Rubio-Senent F; Lama-Muñoz A; García A; Fernández-Bolaños J J Agric Food Chem; 2014 Sep; 62(36):8973-81. PubMed ID: 25140731 [TBL] [Abstract][Full Text] [Related]
9. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Youe WJ; Lee SM; Lee SS; Lee SH; Kim YS Int J Biol Macromol; 2016 Jan; 82():497-504. PubMed ID: 26459170 [TBL] [Abstract][Full Text] [Related]
10. Chemical, Thermal and Antioxidant Properties of Lignins Solubilized during Soda/AQ Pulping of Orange and Olive Tree Pruning Residues. Eugenio ME; Martín-Sampedro R; Santos JI; Wicklein B; Ibarra D Molecules; 2021 Jun; 26(13):. PubMed ID: 34201524 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. Santos JI; Fillat Ú; Martín-Sampedro R; Eugenio ME; Negro MJ; Ballesteros I; Rodríguez A; Ibarra D Int J Biol Macromol; 2017 Dec; 105(Pt 1):238-251. PubMed ID: 28690167 [TBL] [Abstract][Full Text] [Related]
12. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Martín-Sampedro R; Santos JI; Eugenio ME; Wicklein B; Jiménez-López L; Ibarra D Int J Biol Macromol; 2019 Nov; 140():311-322. PubMed ID: 31408656 [TBL] [Abstract][Full Text] [Related]
13. Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels. Rubio-Valle JF; Sánchez MC; Valencia C; Martín-Alfonso JE; Franco JM Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279350 [TBL] [Abstract][Full Text] [Related]
14. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Ago M; Okajima K; Jakes JE; Park S; Rojas OJ Biomacromolecules; 2012 Mar; 13(3):918-26. PubMed ID: 22283444 [TBL] [Abstract][Full Text] [Related]
15. Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. Mulat DG; Dibdiakova J; Horn SJ Biotechnol Biofuels; 2018; 11():61. PubMed ID: 29541158 [TBL] [Abstract][Full Text] [Related]
16. Valorization of Kraft Lignins from Different Poplar Genotypes as Vegetable Oil Structuring Agents via Electrospinning for Biolubricant Applications. Rubio-Valle JF; Valencia C; Sánchez-Carrillo MC; Martín-Alfonso JE; Franco JM ACS Sustain Chem Eng; 2024 Aug; 12(32):12260-12269. PubMed ID: 39148519 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the Tribological Performance of Electrospun Lignin Nanofibrous Web-Thickened Bio-Based Greases in a Nanotribometer. Borrego M; Kuhn E; Martín-Alfonso JE; Franco JM Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947697 [TBL] [Abstract][Full Text] [Related]
18. Molecular Orientation and Organization of Technical Lignin-Based Composite Nanofibers and Films. Cho M; Ko FK; Renneckar S Biomacromolecules; 2019 Dec; 20(12):4485-4493. PubMed ID: 31647629 [TBL] [Abstract][Full Text] [Related]
19. Ethanol production from lignocellulosic byproducts of olive oil extraction. Ballesteros I; Oliva JM; Saez F; Ballesteros M Appl Biochem Biotechnol; 2001; 91-93():237-52. PubMed ID: 11963854 [TBL] [Abstract][Full Text] [Related]
20. Alkylation modification for lignin color reduction and molecular weight adjustment. Jiang X; Tian Z; Ji X; Ma H; Yang G; He M; Dai L; Xu T; Si C Int J Biol Macromol; 2022 Mar; 201():400-410. PubMed ID: 34995668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]