These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37977496)

  • 1. NADH-dependent formate dehydrogenase mutants for efficient carbon dioxide fixation.
    Xue Y; Ji X; Li Z; Ma F; Jiang J; Huang Y
    Bioresour Technol; 2024 Feb; 393():130027. PubMed ID: 37977496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO
    Çakar MM; Ruupunen J; Mangas-Sanchez J; Birmingham WR; Yildirim D; Turunen O; Turner NJ; Valjakka J; Binay B
    Biotechnol Lett; 2020 Nov; 42(11):2251-2262. PubMed ID: 32557118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate.
    Shi HL; Yuan SW; Xi XQ; Xie YL; Yue C; Zhang YJ; Yao LG; Xue C; Tang CD
    World J Microbiol Biotechnol; 2023 Oct; 39(12):352. PubMed ID: 37864750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a new metal and NAD
    Çakar MM; Mangas-Sanchez J; Birmingham WR; Turner NJ; Binay B
    Prep Biochem Biotechnol; 2018 Apr; 48(4):327-334. PubMed ID: 29504829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly explored formate dehydrogenases from Clostridium species catalyze carbon dioxide to formate.
    Min K; Moon M; Park GW; Lee JP; Kim SJ; Lee JS
    Bioresour Technol; 2022 Mar; 348():126832. PubMed ID: 35149183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3 -) to formate.
    Aslan AS; Valjakka J; Ruupunen J; Yildirim D; Turner NJ; Turunen O; Binay B
    Protein Eng Des Sel; 2017 Jan; 30(1):47-55. PubMed ID: 27887026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formate dehydrogenases for CO
    Calzadiaz-Ramirez L; Meyer AS
    Curr Opin Biotechnol; 2022 Feb; 73():95-100. PubMed ID: 34348217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired CO
    Lodh J; Roy S
    J Inorg Biochem; 2022 Sep; 234():111903. PubMed ID: 35780763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J
    J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide.
    Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy.
    Chistoserdova L; Crowther GJ; Vorholt JA; Skovran E; Portais JC; Lidstrom ME
    J Bacteriol; 2007 Dec; 189(24):9076-81. PubMed ID: 17921299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO
    Chen Y; Li P; Noh H; Kung CW; Buru CT; Wang X; Zhang X; Farha OK
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7682-7686. PubMed ID: 30913356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO
    Nielsen CF; Lange L; Meyer AS
    Biotechnol Adv; 2019 Nov; 37(7):107408. PubMed ID: 31200015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Tyr102 residue in the functioning of bacterial NAD
    Popinako АV; Pometun АА; Nilov DK; Dibrova DV; Khrustalev VV; Khrustaleva TA; Iurchenko TS; Nikolaeva АY; Švedas VK; Boyko KМ; Tishkov VI; Popov VО
    Biochem Biophys Res Commun; 2022 Aug; 616():134-139. PubMed ID: 35667288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.