BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37977734)

  • 1. Direct aromatic nitration by bacterial P450 enzymes.
    Chen M; Petriti V; Mondal A; Jiang Y; Ding Y
    Methods Enzymol; 2023; 693():307-337. PubMed ID: 37977734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration.
    Zuo R; Zhang Y; Jiang C; Hackett JC; Loria R; Bruner SD; Ding Y
    Sci Rep; 2017 Apr; 7(1):842. PubMed ID: 28405004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
    Zuo R; Zhang Y; Huguet-Tapia JC; Mehta M; Dedic E; Bruner SD; Loria R; Ding Y
    Biotechnol J; 2016 May; 11(5):624-32. PubMed ID: 26743860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide.
    Martin CP; Chen M; Martinez MF; Ding Y; Caranto JD
    Biochemistry; 2021 Aug; 60(31):2436-2446. PubMed ID: 34319079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion.
    Saroay R; Roiban GD; Alkhalaf LM; Challis GL
    Chembiochem; 2021 Jul; 22(13):2262-2265. PubMed ID: 33851500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE.
    Dodani SC; Cahn JK; Heinisch T; Brinkmann-Chen S; McIntosh JA; Arnold FH
    Chembiochem; 2014 Oct; 15(15):2259-67. PubMed ID: 25182183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate.
    Louka S; Barry SM; Heyes DJ; Mubarak MQE; Ali HS; Alkhalaf LM; Munro AW; Scrutton NS; Challis GL; de Visser SP
    J Am Chem Soc; 2020 Sep; 142(37):15764-15779. PubMed ID: 32811149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-sufficient P450-reductase chimeras for biocatalysis.
    Stout CN; Renata H
    Methods Enzymol; 2023; 693():51-71. PubMed ID: 37977738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis.
    Barry SM; Kers JA; Johnson EG; Song L; Aston PR; Patel B; Krasnoff SB; Crane BR; Gibson DM; Loria R; Challis GL
    Nat Chem Biol; 2012 Oct; 8(10):814-6. PubMed ID: 22941045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the mechanism for recognizing substrate of the cytochrome P450 enzyme TxtE.
    Yu F; Li M; Xu C; Wang Z; Zhou H; Yang M; Chen Y; Tang L; He J
    PLoS One; 2013; 8(11):e81526. PubMed ID: 24282603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis.
    Tomita H; Katsuyama Y; Minami H; Ohnishi Y
    J Biol Chem; 2017 Sep; 292(38):15859-15869. PubMed ID: 28774961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of engineered cytochrome P450 mutants as biocatalysts for the synthesis of benzylic and aromatic metabolites of fenamic acid NSAIDs.
    Venkataraman H; Verkade-Vreeker MC; Capoferri L; Geerke DP; Vermeulen NP; Commandeur JN
    Bioorg Med Chem; 2014 Oct; 22(20):5613-20. PubMed ID: 24999003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Aromatic Nitration System for Synthesis of Nitrotryptophans in Escherichia coli.
    Zuo R; Ding Y
    ACS Synth Biol; 2019 Apr; 8(4):857-865. PubMed ID: 30865826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic C-H Bonds of Aromatic 2,5-Diketopiperazines.
    Jiang G; Zhang Y; Powell MM; Hylton SM; Hiller NW; Loria R; Ding Y
    Chembiochem; 2019 Apr; 20(8):1068-1077. PubMed ID: 30604585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Partners: Function Modulators of Bacterial P450 Enzymes.
    Li S; Du L; Bernhardt R
    Trends Microbiol; 2020 Jun; 28(6):445-454. PubMed ID: 32396826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan.
    Tian X; Liu WQ; Xu H; Ji X; Liu Y; Li J
    Synth Syst Biotechnol; 2022 Jun; 7(2):775-783. PubMed ID: 35387232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.
    Degregorio D; D'Avino S; Castrignanò S; Di Nardo G; Sadeghi SJ; Catucci G; Gilardi G
    Front Pharmacol; 2017; 8():121. PubMed ID: 28377716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Substrate Recognition by the Unusual Nitrating Enzyme RufO.
    Dratch BD; McWhorter KL; Blue TC; Jones SK; Horwitz SM; Davis KM
    ACS Chem Biol; 2023 Aug; 18(8):1713-1718. PubMed ID: 37555759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Cytochrome P450BM3 Enzymes for Direct Nitration of Unsaturated Hydrocarbons.
    Wang X; Lin X; Jiang Y; Qin X; Ma N; Yao F; Dong S; Liu C; Feng Y; Jin L; Xian M; Cong Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217678. PubMed ID: 36660956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.