BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37977738)

  • 1. Self-sufficient P450-reductase chimeras for biocatalysis.
    Stout CN; Renata H
    Methods Enzymol; 2023; 693():51-71. PubMed ID: 37977738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a P450 Fusion Enzyme for Biaryl Coupling in Yeast.
    Zetzsche LE; Chakrabarty S; Narayan ARH
    ACS Chem Biol; 2022 Nov; 17(11):2986-2992. PubMed ID: 36315613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s.
    Sabbadin F; Hyde R; Robin A; Hilgarth EM; Delenne M; Flitsch S; Turner N; Grogan G; Bruce NC
    Chembiochem; 2010 May; 11(7):987-94. PubMed ID: 20425752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450
    Saab-Rincón G; Alwaseem H; Guzmán-Luna V; Olvera L; Fasan R
    Chembiochem; 2018 Mar; 19(6):622-632. PubMed ID: 29276819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct aromatic nitration by bacterial P450 enzymes.
    Chen M; Petriti V; Mondal A; Jiang Y; Ding Y
    Methods Enzymol; 2023; 693():307-337. PubMed ID: 37977734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochromes P450.
    Sabbadin F; Grogan G; Bruce NC
    Methods Mol Biol; 2013; 987():239-49. PubMed ID: 23475682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gene-fusion approach to enabling plant cytochromes p450 for biocatalysis.
    Schückel J; Rylott EL; Grogan G; Bruce NC
    Chembiochem; 2012 Dec; 13(18):2758-63. PubMed ID: 23129550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytic role of cytochrome P450s to produce antibiotics: A review.
    Adhikari A; Shakya S; Shrestha S; Aryal D; Timalsina KP; Dhakal D; Khatri Y; Parajuli N
    Biotechnol Bioeng; 2023 Dec; 120(12):3465-3492. PubMed ID: 37691185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tailor-made, self-sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase.
    Valikhani D; Bolivar JM; Dennig A; Nidetzky B
    Biotechnol Bioeng; 2018 Oct; 115(10):2416-2425. PubMed ID: 30036448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Catalytically Self-Sufficient P450s.
    Renata H
    Biochemistry; 2023 Jan; 62(2):253-261. PubMed ID: 36044428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s.
    Chen CC; Min J; Zhang L; Yang Y; Yu X; Guo RT
    Chembiochem; 2021 Apr; 22(8):1317-1328. PubMed ID: 33232569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
    Zuo R; Zhang Y; Huguet-Tapia JC; Mehta M; Dedic E; Bruner SD; Loria R; Ding Y
    Biotechnol J; 2016 May; 11(5):624-32. PubMed ID: 26743860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology.
    Girvan HM; Munro AW
    Curr Opin Chem Biol; 2016 Apr; 31():136-45. PubMed ID: 27015292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems.
    Guengerich FP; Johnson WW
    Biochemistry; 1997 Dec; 36(48):14741-50. PubMed ID: 9398194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient heterologous expression of cytochrome P450 enzymes in microorganisms for the biosynthesis of natural products.
    Hu B; Zhao X; Wang E; Zhou J; Li J; Chen J; Du G
    Crit Rev Biotechnol; 2023 Mar; 43(2):227-241. PubMed ID: 35129020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis.
    Rajakumara E; Saniya D; Bajaj P; Rajeshwari R; Giri J; Davari MD
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
    Xu J; Wang C; Cong Z
    Chemistry; 2019 May; 25(28):6853-6863. PubMed ID: 30698852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution.
    Liu X; Li F; Sun T; Guo J; Zhang X; Zheng X; Du L; Zhang W; Ma L; Li S
    Commun Biol; 2022 Aug; 5(1):791. PubMed ID: 35933448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Surrogate Systems for Supporting Human Drug-Metabolizing Cytochrome P450 Enzymes.
    Strohmaier SJ; De Voss JJ; Jurva U; Andersson S; Gillam EMJ
    Drug Metab Dispos; 2020 Jun; 48(6):432-437. PubMed ID: 32238418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application.
    Urlacher VB; Girhard M
    Trends Biotechnol; 2012 Jan; 30(1):26-36. PubMed ID: 21782265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.