These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37977774)
1. A colorimetric sensor array based on nanoceria crosslinked and heteroatom-doped graphene oxide nanoribbons for the detection and discrimination of multiple pesticides. Tai S; Wang J; Sun F; Pan Q; Peng C; Wang Z Anal Chim Acta; 2023 Dec; 1283():341929. PubMed ID: 37977774 [TBL] [Abstract][Full Text] [Related]
2. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Zhu Y; Wu J; Han L; Wang X; Li W; Guo H; Wei H Anal Chem; 2020 Jun; 92(11):7444-7452. PubMed ID: 32363854 [TBL] [Abstract][Full Text] [Related]
3. Sensitive colorimetric and fluorescence dual-mode detection of thiophanate-methyl based on spherical Fe Tai S; Cao H; Cui Y; Peng C; Xu J; Wang Z Food Chem; 2024 Aug; 450():139258. PubMed ID: 38626710 [TBL] [Abstract][Full Text] [Related]
4. Algae-derived biochar nanozyme array for discrimination and detection of multiple pesticides in soil, water and food. Yue N; Wu J; Qi W; Su R Food Chem; 2024 Apr; 438():137946. PubMed ID: 37976876 [TBL] [Abstract][Full Text] [Related]
5. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. Rostami S; Mehdinia A; Jabbari A Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111034. PubMed ID: 32994022 [TBL] [Abstract][Full Text] [Related]
6. Nanozyme Inhibited Sensor Array for Biothiol Detection and Disease Discrimination Based on Metal Ion-Doped Carbon Dots. Zhou X; Li L; Wang Y; Kong T; Cao Z; Xie H; Liang W; Wang Y; Qian S; Chao J; Zheng J Anal Chem; 2023 Jun; 95(23):8906-8913. PubMed ID: 37265323 [TBL] [Abstract][Full Text] [Related]
7. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds. Ren E; Qiu H; Yu Z; Cao M; Sohail M; Lu GP; Zhang X; Lin Y J Hazard Mater; 2024 May; 470():134127. PubMed ID: 38554521 [TBL] [Abstract][Full Text] [Related]
8. Accelerated and precise identification of antioxidants and pesticides using a smartphone-based colorimetric sensor array. Luan T; Zhang Y; Song Z; Zhou Y; Ma CB; Lu L; Du Y Talanta; 2024 Sep; 277():126275. PubMed ID: 38810380 [TBL] [Abstract][Full Text] [Related]
9. Smartphone-assisted array discrimination of sulfur-containing compounds and colorimetric-fluorescence dual-mode sensor for detection of 1,4-benzenedithiol based on peroxidase-like nanozyme g-C Nie L; Jiang L; Li S; Song D; Dong G; Bu L; Chen C; Zhou Q Talanta; 2024 Aug; 275():126119. PubMed ID: 38640521 [TBL] [Abstract][Full Text] [Related]
10. Metal-organic framework (MOF)-derived flower-like Ni-MOF@NiV-layered double hydroxides as peroxidase mimetics for colorimetric detection of hydroquinone. He Y; Feng M; Zhang X; Huang Y Anal Chim Acta; 2023 Dec; 1283():341959. PubMed ID: 37977784 [TBL] [Abstract][Full Text] [Related]
11. Dual colorimetric platforms for direct detection of glyphosate based on Os-Rh nanozyme with peroxidase-like activity. Zhong Y; Yang J; Wu W; Chen H; Li S; Zhang Z; Rong S; Wang H Anal Chim Acta; 2024 Oct; 1326():343150. PubMed ID: 39260918 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric sensor array based on Au Wu F; Wang H; Lv J; Shi X; Wu L; Niu X Biosens Bioelectron; 2023 Sep; 236():115417. PubMed ID: 37244084 [TBL] [Abstract][Full Text] [Related]
13. FeMo Li D; Lan C; Chu B; Meng L; Xu N J Hazard Mater; 2024 May; 469():133918. PubMed ID: 38430600 [TBL] [Abstract][Full Text] [Related]
14. Facile and selective recognition of sulfonylurea pesticides based on the multienzyme-like activities enhancement of nanozymes combining sensor array. Tian T; Song D; Zhang L; Huang H; Li Y J Hazard Mater; 2024 May; 469():133847. PubMed ID: 38422731 [TBL] [Abstract][Full Text] [Related]
15. High-loading Cu single-atom nanozymes supported by carbon nitride with peroxidase-like activity for the colorimetric detection of tannic acid. Xie X; Chen X; Wang Y; Zhang M; Fan Y; Yang X Talanta; 2023 May; 257():124387. PubMed ID: 36841014 [TBL] [Abstract][Full Text] [Related]
16. A colorimetric sensor array based on sulfuric acid assisted KMnO Qiao L; Qian S; Wang Y; Lin H Talanta; 2018 May; 181():305-310. PubMed ID: 29426516 [TBL] [Abstract][Full Text] [Related]
17. Inhibition effect of p-d orbital hybridized PtSn nanozymes for colorimetric sensor array of antioxidants. Jia X; Jiao L; Li R; Yan D; Hu L; Chen C; Li X; Zhai Y; Lu X Biosens Bioelectron; 2024 Oct; 261():116468. PubMed ID: 38852326 [TBL] [Abstract][Full Text] [Related]
18. Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice. Yuan X; Cheng S; Chen L; Cheng Z; Liu J; Zhang H; Yang J; Li Y Talanta; 2023 Jun; 258():124407. PubMed ID: 36871515 [TBL] [Abstract][Full Text] [Related]
19. A nanozyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification. Zhu X; Li T; Hai X; Bi S Biosens Bioelectron; 2022 Oct; 213():114438. PubMed ID: 35688026 [TBL] [Abstract][Full Text] [Related]
20. Glutathione‑iron hybrid nanozyme-based colorimetric sensor for specific and stable detection of thiram pesticide on fruit juices. Yan X; Zou R; Lin Q; Ma Y; Li A; Sun X; Lu G; Li H Food Chem; 2024 Sep; 452():139569. PubMed ID: 38744131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]