These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37978244)

  • 61. An optimized and low-cost FPGA-based DNA sequence alignment--a step towards personal genomics.
    Shah HA; Hasan L; Ahmad N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2696-9. PubMed ID: 24110283
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling.
    Zhang T; Li H; Ma S; Cao J; Liao H; Huang Q; Chen W
    Appl Environ Microbiol; 2023 Oct; 89(10):e0060523. PubMed ID: 37800969
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Accurate spliced alignment of long RNA sequencing reads.
    Sahlin K; Mäkinen V
    Bioinformatics; 2021 Dec; 37(24):4643-4651. PubMed ID: 34302453
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Faster single-end alignment generation utilizing multi-thread for BWA.
    Jo H; Koh G
    Biomed Mater Eng; 2015; 26 Suppl 1():S1791-6. PubMed ID: 26405948
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Performance optimization in DNA short-read alignment.
    Wilton R; Szalay AS
    Bioinformatics; 2022 Apr; 38(8):2081-2087. PubMed ID: 35139149
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Implementation of a custom hardware-accelerator for short-read mapping using Burrows-Wheeler alignment.
    Waidyasooriya HM; Hariyama M; Kameyama M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():651-4. PubMed ID: 24109771
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Survey of Software and Hardware Approaches to Performing Read Alignment in Next Generation Sequencing.
    Al Kawam A; Khatri S; Datta A
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1202-1213. PubMed ID: 27362989
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluating Structural Variation Detection Tools for Long-Read Sequencing Datasets in
    Luan MW; Zhang XM; Zhu ZB; Chen Y; Xie SQ
    Front Genet; 2020; 11():159. PubMed ID: 32211024
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FPGA-Based Processor Acceleration for Image Processing Applications.
    Siddiqui F; Amiri S; Minhas UI; Deng T; Woods R; Rafferty K; Crookes D
    J Imaging; 2019 Jan; 5(1):. PubMed ID: 34465705
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing.
    Sharma A; Jain P; Mahgoub A; Zhou Z; Mahadik K; Chaterji S
    BMC Bioinformatics; 2022 Jan; 23(1):25. PubMed ID: 34991450
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distributed large-scale graph processing on FPGAs.
    Sahebi A; Barbone M; Procaccini M; Luk W; Gaydadjiev G; Giorgi R
    J Big Data; 2023; 10(1):95. PubMed ID: 37283690
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Vina-FPGA-Cluster: Multi-FPGA Based Molecular Docking Tool with High-Accuracy and Multi-Level Parallelism.
    Ling M; Feng Z; Chen R; Shao Y; Tang S; Zhu Y
    IEEE Trans Biomed Circuits Syst; 2024 Apr; PP():. PubMed ID: 38619953
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fec: a fast error correction method based on two-rounds overlapping and caching.
    Zhang J; Nie F; Huang N; Ni P; Luo F; Wang J
    Bioinformatics; 2022 Sep; 38(19):4629-4632. PubMed ID: 35977383
    [TBL] [Abstract][Full Text] [Related]  

  • 74. kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the
    Wei ZG; Fan XG; Zhang H; Zhang XD; Liu F; Qian Y; Zhang SW
    Front Genet; 2022; 13():890651. PubMed ID: 35601495
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rapid and precise alignment of raw reads against redundant databases with KMA.
    Clausen PTLC; Aarestrup FM; Lund O
    BMC Bioinformatics; 2018 Aug; 19(1):307. PubMed ID: 30157759
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An OpenCL-Based FPGA Accelerator for Faster R-CNN.
    An J; Zhang D; Xu K; Wang D
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420365
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GPU acceleration of Darwin read overlapper for de novo assembly of long DNA reads.
    Ahmed N; Qiu TD; Bertels K; Al-Ars Z
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):388. PubMed ID: 32938392
    [TBL] [Abstract][Full Text] [Related]  

  • 78. GenSeq+: A Scalable High-Performance Accelerator for Genome Sequencing.
    Wang C; Gong L; Lei S; Fang H; Li X; Wang A; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1512-1523. PubMed ID: 31613776
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA Modification Patterns Filtering and Analysis Using DNAModAnnot.
    Hardy A; Duharcourt S; Defrance M
    Methods Mol Biol; 2023; 2624():87-114. PubMed ID: 36723811
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies.
    Sevim V; Lee J; Egan R; Clum A; Hundley H; Lee J; Everroad RC; Detweiler AM; Bebout BM; Pett-Ridge J; Göker M; Murray AE; Lindemann SR; Klenk HP; O'Malley R; Zane M; Cheng JF; Copeland A; Daum C; Singer E; Woyke T
    Sci Data; 2019 Nov; 6(1):285. PubMed ID: 31772173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.