These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37978691)

  • 1. Fine-grained domain counting and percolation analysis in two-dimensional lattice systems with linked lists.
    Sable H; Gaur D; Angom D
    Phys Rev E; 2023 Oct; 108(4-2):045307. PubMed ID: 37978691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly interacting bosons in a disordered optical lattice.
    White M; Pasienski M; McKay D; Zhou SQ; Ceperley D; Demarco B
    Phys Rev Lett; 2009 Feb; 102(5):055301. PubMed ID: 19257516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strongly Interacting Bosons in a Two-Dimensional Quasicrystal Lattice.
    Gautier R; Yao H; Sanchez-Palencia L
    Phys Rev Lett; 2021 Mar; 126(11):110401. PubMed ID: 33798372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong interaction effects and criticality of bosons in shaken optical lattices.
    Zheng W; Liu B; Miao J; Chin C; Zhai H
    Phys Rev Lett; 2014 Oct; 113(15):155303. PubMed ID: 25375720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of coherence and the dynamics of quantum phase transitions.
    Braun S; Friesdorf M; Hodgman SS; Schreiber M; Ronzheimer JP; Riera A; Del Rey M; Bloch I; Eisert J; Schneider U
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3641-6. PubMed ID: 25775515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring entanglement growth in quench dynamics of bosons in an optical lattice.
    Daley AJ; Pichler H; Schachenmayer J; Zoller P
    Phys Rev Lett; 2012 Jul; 109(2):020505. PubMed ID: 23030143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational ansatz for the superfluid Mott-insulator transition in optical lattices.
    García-Ripoll JJ; Cirac J; Zoller P; Kollath C; Schollwöck U; von Delft J
    Opt Express; 2004 Jan; 12(1):42-54. PubMed ID: 19471510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winding up of the wave-function phase by an insulator-to-superfluid transition in a ring of coupled Bose-Einstein condensates.
    Dziarmaga J; Meisner J; Zurek WH
    Phys Rev Lett; 2008 Sep; 101(11):115701. PubMed ID: 18851300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possibility of a first-order superfluid-Mott-insulator transition of spinor bosons in an optical lattice.
    Kimura T; Tsuchiya S; Kurihara S
    Phys Rev Lett; 2005 Mar; 94(11):110403. PubMed ID: 15903833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
    Thomas CK; Barter TH; Leung TH; Okano M; Jo GB; Guzman J; Kimchi I; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2017 Sep; 119(10):100402. PubMed ID: 28949195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Percolation on a multifractal scale-free planar stochastic lattice and its universality class.
    Hassan MK; Rahman MM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):040101. PubMed ID: 26565145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase diagram for a Bose-Einstein condensate moving in an optical lattice.
    Mun J; Medley P; Campbell GK; Marcassa LG; Pritchard DE; Ketterle W
    Phys Rev Lett; 2007 Oct; 99(15):150604. PubMed ID: 17995152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quench in the 1D Bose-Hubbard model: topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics.
    Dziarmaga J; Zurek WH
    Sci Rep; 2014 Aug; 4():5950. PubMed ID: 25091996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase diagram of a disordered boson Hubbard model in two dimensions.
    Lee JW; Cha MC; Kim D
    Phys Rev Lett; 2001 Dec; 87(24):247006. PubMed ID: 11736535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal paths in strong and weak disorder: a unified approach.
    Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036128. PubMed ID: 16605619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lieb-Liniger Bosons in a Shallow Quasiperiodic Potential: Bose Glass Phase and Fractal Mott Lobes.
    Yao H; Giamarchi T; Sanchez-Palencia L
    Phys Rev Lett; 2020 Aug; 125(6):060401. PubMed ID: 32845659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. History-dependent percolation in two dimensions.
    Hu M; Sun Y; Wang D; Lv JP; Deng Y
    Phys Rev E; 2020 Nov; 102(5-1):052121. PubMed ID: 33327086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.