These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37978924)

  • 61. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design.
    Mnif I; Sahnoun R; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):851-61. PubMed ID: 23818070
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combined soil washing and CDEO for the removal of atrazine from soils.
    Dos Santos EV; Sáez C; Martínez-Huitle CA; Cañizares P; Rodrigo MA
    J Hazard Mater; 2015 Dec; 300():129-134. PubMed ID: 26164070
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surfactant adsorption to soil components and soils.
    Ishiguro M; Koopal LK
    Adv Colloid Interface Sci; 2016 May; 231():59-102. PubMed ID: 26969282
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Strengthening Effects of Sodium Salts on Washing Kerosene Contaminated Soil with Surfactants].
    Huang ZL; Chen QY; Zhou J; Xie MH
    Huan Jing Ke Xue; 2015 May; 36(5):1849-55. PubMed ID: 26314139
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solubilization and desorption of methyl-parathion from porous media: a comparison of hydroxypropyl-beta-cyclodextrin and two nonionic surfactants.
    Zeng QR; Tang HX; Liao BH; Zhong T; Tang C
    Water Res; 2006 Apr; 40(7):1351-8. PubMed ID: 16540145
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Macroscopic and Microscopic Properties of Some Surfactants and Biosurfactants.
    Zdziennicka A; Krawczyk J; Szymczyk K; Jańczuk B
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29966385
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation.
    Alcántara MT; Gómez J; Pazos M; Sanromán MA
    Chemosphere; 2008 Feb; 70(8):1438-44. PubMed ID: 17936331
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Surfactant-Containing Foam Effectively Enhanced the Removal of Polycyclic Aromatic Hydrocarbons from Heavily Contaminated Soil.
    Zhu Y; Wang X; Zhang Y; Chio C; Qin W; Li H
    Bull Environ Contam Toxicol; 2023 Jan; 110(2):50. PubMed ID: 36719501
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of rhamnolipids and triton X-100 on the desorption of pesticides from soils.
    Mata-Sandoval JC; Karns J; Torrents A
    Environ Sci Technol; 2002 Nov; 36(21):4669-75. PubMed ID: 12433180
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surfactant assemblies and their various possible roles for the origin(s) of life.
    Walde P
    Orig Life Evol Biosph; 2006 Apr; 36(2):109-50. PubMed ID: 16642266
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of carrier on the transport and DDT removal performance of nano-zerovalent iron in packed sands.
    Shi L; Chen J; Wang Q; Song X
    Chemosphere; 2018 Oct; 209():489-495. PubMed ID: 29940532
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of SOM, surfactant and pH on the sorption-desorption and mobility of prometryne in soils.
    Cao J; Guo H; Zhu HM; Jiang L; Yang H
    Chemosphere; 2008 Feb; 70(11):2127-34. PubMed ID: 17923148
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of soil fines and surfactant sorption on contaminant reduction of coarse fractions during soil washing.
    Yeh CK; Young CC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(11):2697-709. PubMed ID: 14533933
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Environmental features of two commercial surfactants widely used in soil remediation.
    Franzetti A; Di Gennaro P; Bevilacqua A; Papacchini M; Bestetti G
    Chemosphere; 2006 Mar; 62(9):1474-80. PubMed ID: 16084568
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Retention of organophosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant.
    Hernández-Soriano MC; Peña A; Mingorance MD
    Sci Total Environ; 2007 May; 378(1-2):109-13. PubMed ID: 17316770
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of microbial and synthetic surfactant on the biodegradation of atrazine.
    Singh AK; Cameotra SS
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2088-2097. PubMed ID: 24026208
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced soil retention for o-nitroaniline by the addition of a mixture of a cationic surfactant (Cetyl Pyridinium Chloride) and a nonionic surfactant (Polyethylene Glycol Mono-4-nonylphenyl Ether).
    Zhao Q; Yang K; Li P
    J Hazard Mater; 2010 Oct; 182(1-3):757-62. PubMed ID: 20638783
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system.
    Zheng Z; Obbard JP
    Water Res; 2002 May; 36(10):2667-72. PubMed ID: 12153034
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Generalized model of pentachlorophenol distribution in amended soil-water systems.
    Fall C; Chavarie C; Chaouki J
    Water Environ Res; 2001; 73(1):110-7. PubMed ID: 11558295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.