BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37979084)

  • 21. Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria.
    Crowe SA; Roberts JA; Weisener CG; Fowle DA
    Geobiology; 2007 Mar; 5(1):63-73. PubMed ID: 36298876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR).
    Liu C; Yang J; Liu L; Li B; Yuan H; Liu W
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28500045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32.
    Luan F; Burgos WD; Xie L; Zhou Q
    Environ Sci Technol; 2010 Jan; 44(1):184-90. PubMed ID: 19957913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms.
    An H; Tian T; Wang Z; Jin R; Zhou J
    Sci Total Environ; 2022 Mar; 810():151184. PubMed ID: 34699809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of natural organic matter on zinc inhibition of hematite bioreduction by Shewanella putrefaciens CN32.
    Stone JJ; Royer RA; Dempsey BA; Burgos WD
    Environ Sci Technol; 2007 Aug; 41(15):5284-90. PubMed ID: 17822092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction.
    Pinchuk GE; Ammons C; Culley DE; Li SM; McLean JS; Romine MF; Nealson KH; Fredrickson JK; Beliaev AS
    Appl Environ Microbiol; 2008 Feb; 74(4):1198-208. PubMed ID: 18156329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of hexavalent chromium reduction by Shewanella oneidensis MR-1 in presence of copper nanoparticles via stimulating bacterial extracellular electron transfer and environmental adaptability.
    Chen L; Wu Y; Shen Q; Zheng X; Chen Y
    Bioresour Technol; 2022 Oct; 361():127686. PubMed ID: 35901865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design.
    Yuan W; Cheng J; Huang H; Xiong S; Gao J; Zhang J; Feng S
    Ecotoxicol Environ Saf; 2019 Jul; 175():138-147. PubMed ID: 30897412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Cyclic AMP Receptor Protein, Crp, Is Required for the Decolorization of Acid Yellow 36 in
    Liu W; Chen Y; Zhou X; Liu J; Zhu J; Wang S; Liu C; Sun D
    Front Microbiol; 2020; 11():596372. PubMed ID: 33362744
    [No Abstract]   [Full Text] [Related]  

  • 32. Electrical tension-triggered conversion of anaerobic to aerobic respiration of Shewanella putrefaciens CN32 cells while promoting biofilm growth in microbial fuel cells.
    He X; Wu X; Qiao Y; Hu T; Wang D; Han X; Li CM
    Chem Commun (Camb); 2020 Jun; 56(45):6050-6053. PubMed ID: 32347873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II protein secretion gene.
    DiChristina TJ; Moore CM; Haller CA
    J Bacteriol; 2002 Jan; 184(1):142-51. PubMed ID: 11741854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EDDS enhanced Shewanella putrefaciens CN32 and α-FeOOH reductive dechlorination of carbon tetrachloride.
    Zhou LY; Chen S; Li H; Guo S; Liu YD; Yang J
    Chemosphere; 2018 May; 198():556-564. PubMed ID: 29422245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.
    Glasauer S; Langley S; Beveridge TJ
    Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decolorization and detoxification of water-insoluble Sudan dye by Shewanella putrefaciens CN32 co-cultured with Bacillus circulans BWL1061.
    Liu W; You Y; Sun D; Wang S; Zhu J; Liu C
    Ecotoxicol Environ Saf; 2018 Dec; 166():11-17. PubMed ID: 30240930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of coagulation mechanisms of polyferric sulfate reacting with humic acid using a fluorescence-quenching method.
    Cheng WP; Chi FH
    Water Res; 2002 Nov; 36(18):4583-91. PubMed ID: 12418661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.