These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37979084)

  • 41. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electromagnetic Field Drives the Bioelectrocatalysis of γ-Fe
    Wang X; Shi Z; Wang Z; Wu X
    Materials (Basel); 2024 Mar; 17(7):. PubMed ID: 38612017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens.
    DiChristina TJ; DeLong EF
    Appl Environ Microbiol; 1993 Dec; 59(12):4152-60. PubMed ID: 7506899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration.
    Glasauer S; Langley S; Boyanov M; Lai B; Kemner K; Beveridge TJ
    Appl Environ Microbiol; 2007 Feb; 73(3):993-6. PubMed ID: 17142380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY.
    Caccavo F; Frolund B; Van Ommen KF; Nielsen PH
    Appl Environ Microbiol; 1996 Apr; 62(4):1487-90. PubMed ID: 16535299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteria-driven copper redox reaction coupled electron transfer from Cr(VI) to Cr(III): A new and alternate mechanism of Cr(VI) bioreduction.
    Min X; Zhang K; Chen J; Chai L; Lin Z; Zou L; Liu W; Ding C; Shi Y
    J Hazard Mater; 2024 Jan; 461():132485. PubMed ID: 37714006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.
    Wheaton GH; Mukherjee A; Kelly RM
    Appl Environ Microbiol; 2016 Aug; 82(15):4613-4627. PubMed ID: 27208114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial reduction of copper-contaminated ferric oxide: copper toxicity and the interaction between fermentative and iron-reducing bacteria.
    Markwiese JT; Colberg PJ
    Arch Environ Contam Toxicol; 2000 Feb; 38(2):139-46. PubMed ID: 10629273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sulfate reduction, molecular diversity, and copper amendment effects in bacterial communities enriched from sediments exposed to copper mining residues.
    Pavissich JP; Silva M; González B
    Environ Toxicol Chem; 2010 Feb; 29(2):256-264. PubMed ID: 20821443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracellular polymeric substance induces biogenesis of vivianite under inorganic phosphate-free conditions.
    Hao X; Tang J; Yi X; Gao K; Yao Q; Feng C; Huang W; Dang Z
    J Environ Sci (China); 2022 Oct; 120():115-124. PubMed ID: 35623765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus.
    Feng S; Hou S; Cui Y; Tong Y; Yang H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):21-33. PubMed ID: 31758413
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.
    Zhou Q; Chen Y; Yang M; Li W; Deng L
    Bioresour Technol; 2013 May; 136():413-7. PubMed ID: 23567710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens.
    Arnold RG; Hoffmann MR; Dichristina TJ; Picardal FW
    Appl Environ Microbiol; 1990 Sep; 56(9):2811-7. PubMed ID: 16348289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosorption of metals (Cu(2+), Zn(2+)) and anions (F(-), H(2)PO(4)(-)) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens.
    Chubar N; Behrends T; Van Cappellen P
    Colloids Surf B Biointerfaces; 2008 Aug; 65(1):126-33. PubMed ID: 18450432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of the tolerance to Fe, Cu and Zn of a sulfidogenic sludge generated from hydrothermal vents sediments as a basis for its application on metals precipitation.
    Jan-Roblero J; Cancino-Díaz JC; García-Mena J; Nirmalkar K; Zárate-Segura P; Ordaz A; Guerrero-Barajas C
    Mol Biol Rep; 2020 Aug; 47(8):6165-6177. PubMed ID: 32749633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.