BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37979156)

  • 1. Parallel Nonfunctionalization of CK1δ/ε Kinase Ohnologs Following a Whole-Genome Duplication Event.
    Evans-Yamamoto D; Dubé AK; Saha G; Plante S; Bradley D; Gagnon-Arsenault I; Landry CR
    Mol Biol Evol; 2023 Dec; 40(12):. PubMed ID: 37979156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event.
    Evans-Yamamoto D; Dubé AK; Saha G; Plante S; Bradley D; Gagnon-Arsenault I; Landry CR
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication.
    Byrne KP; Wolfe KH
    Genetics; 2007 Mar; 175(3):1341-50. PubMed ID: 17194778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico evidence for functional specialization after genome duplication in yeast.
    Turunen O; Seelke R; Macosko J
    FEMS Yeast Res; 2009 Feb; 9(1):16-31. PubMed ID: 19133069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant.
    Makino T; McLysaght A
    Genome Res; 2012 Dec; 22(12):2427-35. PubMed ID: 22835904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight on the impact of teleost whole genome duplication on the regulation of the molecular networks controlling skeletal muscle growth.
    Duran BOS; Garcia de la Serrana D; Zanella BTT; Perez ES; Mareco EA; Santos VB; Carvalho RF; Dal-Pai-Silva M
    PLoS One; 2021; 16(7):e0255006. PubMed ID: 34293047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.
    Presser A; Elowitz MB; Kellis M; Kishony R
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):950-4. PubMed ID: 18199840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of protein interactions and regulatory divergence in yeast whole-genome duplicates.
    Vinogradov AE; Anatskaya OV
    Genomics; 2009 Jun; 93(6):534-42. PubMed ID: 19272438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts.
    Hurtig JE; Kim M; Orlando-Coronel LJ; Ewan J; Foreman M; Notice LA; Steiger MA; van Hoof A
    RNA; 2020 Oct; 26(10):1464-1480. PubMed ID: 32631843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identity and divergence of protein domain architectures after the yeast whole-genome duplication event.
    Grassi L; Fusco D; Sellerio A; Corà D; Bassetti B; Caselle M; Lagomarsino MC
    Mol Biosyst; 2010 Nov; 6(11):2305-15. PubMed ID: 20820472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.
    Scannell DR; Frank AC; Conant GC; Byrne KP; Woolfit M; Wolfe KH
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8397-402. PubMed ID: 17494770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Conservation of Ohnologs Through Partial Tetrasomy Following Whole-Genome Duplication in Salmonidae.
    Campbell MA; Hale MC; McKinney GJ; Nichols KM; Pearse DE
    G3 (Bethesda); 2019 Jun; 9(6):2017-2028. PubMed ID: 31010824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species.
    Eberlein C; Nielly-Thibault L; Maaroufi H; Dubé AK; Leducq JB; Charron G; Landry CR
    Mol Biol Evol; 2017 Sep; 34(9):2173-2186. PubMed ID: 28482005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the number of intrinsically disordered regions between yeast duplicated proteins, and their relationship with functional divergence.
    Montanari F; Shields DC; Khaldi N
    PLoS One; 2011; 6(9):e24989. PubMed ID: 21949823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Budding Yeast Hrr25 in Recombination and Sporulation.
    Lee MS; Joo JH; Kim K
    J Microbiol Biotechnol; 2017 Jun; 27(6):1198-1203. PubMed ID: 28335590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locally duplicated ohnologs evolve faster than nonlocally duplicated ohnologs in Arabidopsis and rice.
    Wang Y
    Genome Biol Evol; 2013; 5(2):362-9. PubMed ID: 23362157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion.
    Byrnes JK; Morris GP; Li WH
    Mol Biol Evol; 2006 Jun; 23(6):1136-43. PubMed ID: 16527865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The divergence of alternative splicing between ohnologs in teleost fishes.
    Wang Y; Guo B
    BMC Ecol Evol; 2021 May; 21(1):98. PubMed ID: 34034651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.