These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37979256)

  • 1. A new α-amylase inhibitory peptide from Gynura medica extract.
    Ma K; Su ZY; Cheng YH; Yang XP
    Food Chem; 2024 Apr; 438():137959. PubMed ID: 37979256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue honeysuckle extracts retarded starch digestion by inhibiting glycosidases and changing the starch structure.
    Zhang X; Rehman RU; Wang S; Ji Y; Li J; Liu S; Wang H
    Food Funct; 2022 Jun; 13(11):6072-6088. PubMed ID: 35550649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase.
    He T; Zhang X; Zhao L; Zou J; Qiu R; Liu X; Hu Z; Wang K
    Food Chem; 2023 Nov; 426():136624. PubMed ID: 37356242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C
    Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction mechanism of carnosic acid against glycosidase (α-amylase and α-glucosidase).
    Wang H; Wang J; Liu Y; Ji Y; Guo Y; Zhao J
    Int J Biol Macromol; 2019 Oct; 138():846-853. PubMed ID: 31356939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of chlorophylls and its derivative on starch digestion in vitro.
    Wang X; Yang Z; Shen S; Ji X; Chen F; Liao X; Zhang H; Zhang Y
    Food Chem; 2023 Jul; 413():135377. PubMed ID: 36773358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.
    Miao M; Jiang B; Jiang H; Zhang T; Li X
    Food Chem; 2015 Nov; 186():20-5. PubMed ID: 25976786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses.
    Liu S; Meng F; Guo S; Yuan M; Wang H; Chang X
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129573. PubMed ID: 38266829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the relationship between starch molecular conformation and enzymatic hydrolysis efficiency.
    Haixia Z; Xijuan Y; Yongxin S; Guochao G; Qiao W; Li C; Zhiguang C
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132570. PubMed ID: 38782316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and α-amylase activity perspective.
    Xu H; Hao Z; Zhang J; Liu H; Deng C; Yu Z; Zheng M; Liu Y; Zhou Y; Xiao Y
    Carbohydr Polym; 2023 Aug; 314():120940. PubMed ID: 37173023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of delaying starch digestion by luteolin.
    Zhao Y; Wang M; Zhang J; Xiong C; Huang G
    Food Funct; 2021 Nov; 12(23):11862-11871. PubMed ID: 34734615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytonutrients for controlling starch digestion: evaluation of grape skin extract.
    Miao M; Jiang H; Jiang B; Zhang T; Cui SW; Jin Z
    Food Chem; 2014 Feb; 145():205-11. PubMed ID: 24128469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate.
    Zhou H; Safdar B; Li H; Yang L; Ying Z; Liu X
    Food Chem; 2023 Mar; 403():134434. PubMed ID: 36358076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory activity of
    Purnomo Y; Makdasari J; Fatahillah FI
    J Basic Clin Physiol Pharmacol; 2021 Jun; 32(4):889-894. PubMed ID: 34214371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves.
    Sun Y; Cao Q; Huang Y; Lu T; Ma H; Chen X
    J Sci Food Agric; 2024 Jan; 104(1):63-74. PubMed ID: 37515816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic mechanisms for the inhibition effect of graphene oxide on the catalysis activity of alpha amylase.
    Liu X; Sun B; Xu C; Zhang T; Zhang Y; Zhu L
    J Hazard Mater; 2023 Jul; 453():131389. PubMed ID: 37043854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the Influences of Five Food-Borne Polyphenols on
    Ren S; Li K; Liu Z
    J Agric Food Chem; 2019 Aug; 67(31):8617-8625. PubMed ID: 31293160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin slow-release system delays starch digestion via inhibiting transporters and enzymes.
    Wang L; Ma R; Tian Y
    Food Chem; 2024 Dec; 461():140855. PubMed ID: 39167947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Structure-Activity Relationship Study of the Inhibition of α-Amylase by Benzoic Acid and Its Derivatives.
    Guan L; Long H; Ren F; Li Y; Zhang H
    Nutrients; 2022 May; 14(9):. PubMed ID: 35565898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLG-007 and Its Active Component Galactomannan-α Competitively Inhibit Enzymes That Hydrolyze Glucose Polymers.
    Miller MC; Dregni AJ; Platt D; Mayo KH
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.