These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37979256)
21. Inhibition and interactions of alpha-amylase by daucosterol from the peel of Chinese water chestnut ( Gu Y; Yang X; Shang C; Thao TTP; Koyama T Food Funct; 2021 Sep; 12(18):8411-8424. PubMed ID: 34369540 [TBL] [Abstract][Full Text] [Related]
22. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. Yang JP; He H; Lu YH J Agric Food Chem; 2014 Aug; 62(31):7760-70. PubMed ID: 25019533 [TBL] [Abstract][Full Text] [Related]
23. The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic alpha-amylase. Slaughter SL; Ellis PR; Jackson EC; Butterworth PJ Biochim Biophys Acta; 2002 May; 1571(1):55-63. PubMed ID: 12031290 [TBL] [Abstract][Full Text] [Related]
24. A neutral polysaccharide from green tea: Structure, effect on α-amylase activity and hydrolysis property. Yin L; Fu S; Wu R; Wei S; Yi J; Zhang LM; Yang L Arch Biochem Biophys; 2020 Jul; 687():108369. PubMed ID: 32335047 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of glycosidase by ursolic acid: in vitro, in vivo and in silico study. Wang J; Zhao J; Yan Y; Liu D; Wang C; Wang H J Sci Food Agric; 2020 Feb; 100(3):986-994. PubMed ID: 31650545 [TBL] [Abstract][Full Text] [Related]
26. Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase. Lo Piparo E; Scheib H; Frei N; Williamson G; Grigorov M; Chou CJ J Med Chem; 2008 Jun; 51(12):3555-61. PubMed ID: 18507367 [TBL] [Abstract][Full Text] [Related]
27. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
28. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems. Warren FJ; Zhang B; Waltzer G; Gidley MJ; Dhital S Carbohydr Polym; 2015 Mar; 117():192-200. PubMed ID: 25498625 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Hua F; Zhou P; Wu HY; Chu GX; Xie ZW; Bao GH Food Funct; 2018 Aug; 9(8):4173-4183. PubMed ID: 29989631 [TBL] [Abstract][Full Text] [Related]
30. Inconsistency between polyphenol-enzyme binding interactions and enzyme inhibition: Galloyl moiety decreases amyloglucosidase inhibition of catechins. Zhang J; Li S; Liu X; Sun L Food Res Int; 2023 Jan; 163():112155. PubMed ID: 36596106 [TBL] [Abstract][Full Text] [Related]
31. Longan seed polyphenols inhibit α-amylase activity and reduce postprandial glycemic response in mice. He T; Zhao L; Chen Y; Zhang X; Hu Z; Wang K Food Funct; 2021 Dec; 12(24):12338-12346. PubMed ID: 34825681 [TBL] [Abstract][Full Text] [Related]
32. Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Layer P; Zinsmeister AR; DiMagno EP Gastroenterology; 1986 Jul; 91(1):41-8. PubMed ID: 2423408 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of starch digestion by phenolic acids with a cinnamic acid backbone: Structural requirements for the inhibition of α-amylase and α-glucosidase. Yu M; Zhu S; Huang D; Tao X; Li Y Food Chem; 2024 Mar; 435():137499. PubMed ID: 37774621 [TBL] [Abstract][Full Text] [Related]
34. Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes. Zhang K; Chen XL; Zhao X; Ni JY; Wang HL; Han M; Zhang YM J Ethnopharmacol; 2022 Jun; 291():115118. PubMed ID: 35202712 [TBL] [Abstract][Full Text] [Related]
35. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Zheng Y; Tian J; Yang W; Chen S; Liu D; Fang H; Zhang H; Ye X Food Chem; 2020 Jul; 317():126346. PubMed ID: 32070843 [TBL] [Abstract][Full Text] [Related]
36. Influence of molecular structure on the susceptibility of starch to α-amylase. Villas-Boas F; Yamauti Y; Moretti MMS; Franco CML Carbohydr Res; 2019 Jun; 479():23-30. PubMed ID: 31102972 [TBL] [Abstract][Full Text] [Related]
37. Efficient Retention and Complexation of Exogenous Ferulic Acid in Starch: Could Controllable Bioextrusion Be the Answer? Ma S; Zhu Q; Yao S; Niu R; Liu Y; Qin Y; Zheng Y; Tian J; Li D; Wang W; Liu D; Xu E J Agric Food Chem; 2022 Nov; 70(47):14919-14930. PubMed ID: 36395416 [TBL] [Abstract][Full Text] [Related]
38. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18. Nwokoro O; Anthonia O Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022 [TBL] [Abstract][Full Text] [Related]
40. A strategy based on liquid-liquid-refining extraction and high-speed counter-current chromatography for the bioassay-guided separation of active compound from Taraxacum mongolicum. Yang Y; Wang Y; Zeng W; Tian J; Zhao X; Han J; Huang D; Gu D J Chromatogr A; 2020 Mar; 1614():460727. PubMed ID: 31780080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]