These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37979379)

  • 1. The potential benefits of polyphenols for corneal diseases.
    Feng J; Zhang Y
    Biomed Pharmacother; 2023 Dec; 169():115862. PubMed ID: 37979379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quercetin and the ocular surface: What we know and where we are going.
    McKay TB; Karamichos D
    Exp Biol Med (Maywood); 2017 Mar; 242(6):565-572. PubMed ID: 28056553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NFE2L2 activator RS9 protects against corneal epithelial cell damage in dry eye models.
    Matsuda Y; Machida M; Nakagami Y; Nakajima T; Azuma M
    PLoS One; 2020; 15(4):e0229421. PubMed ID: 32320433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trehalose for Ocular Surface Health.
    Laihia J; Kaarniranta K
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32466265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury.
    Zernii EY; Gancharova OS; Tiulina VV; Zamyatnin AA; Philippov PP; Baksheeva VE; Senin II
    BMC Ophthalmol; 2018 Dec; 18(1):336. PubMed ID: 30587174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium compound protects corneal epithelium against oxidative stress.
    Higuchi A; Inoue H; Kawakita T; Ogishima T; Tsubota K
    PLoS One; 2012; 7(9):e45612. PubMed ID: 23049824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, a superoxide dismutase mimetic, reduces disease severity in in vitro and in vivo models for dry-eye disease.
    Žiniauskaitė A; Ragauskas S; Ghosh AK; Thapa R; Roessler AE; Koulen P; Kalesnykas G; Hakkarainen JJ; Kaja S
    Ocul Surf; 2019 Apr; 17(2):257-264. PubMed ID: 30807830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye.
    Nagelhout TJ; Gamache DA; Roberts L; Brady MT; Yanni JM
    J Ocul Pharmacol Ther; 2005 Apr; 21(2):139-48. PubMed ID: 15857280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.
    Higuchi A; Oonishi E; Kawakita T; Tsubota K
    Mol Vis; 2016; 22():446-53. PubMed ID: 27186071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of refractory cases of persistent epithelial defects associated with dry eye syndrome and recurrent corneal erosions successfully treated with cyclosporine A 0.05% eye drops.
    Napoli PE; Braghiroli M; Iovino C; Demarinis G; Fossarello M
    Drug Des Devel Ther; 2019; 13():2001-2008. PubMed ID: 31354245
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of topical N-acetylcysteine in ocular therapeutics.
    Eghtedari Y; Oh LJ; Girolamo ND; Watson SL
    Surv Ophthalmol; 2022; 67(2):608-622. PubMed ID: 34339721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of Polyphenols Efficacy against Dry Eye Disease.
    Favero G; Moretti E; Krajčíková K; Tomečková V; Rezzani R
    Antioxidants (Basel); 2021 Jan; 10(2):. PubMed ID: 33525721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxidative stress in corneal diseases and injuries.
    Čejková J; Čejka Č
    Histol Histopathol; 2015 Aug; 30(8):893-900. PubMed ID: 25803192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical Porphyrin Antioxidant Protects Against Ocular Surface Pathology in a Novel Rabbit Model for Particulate Matter-Induced Dry Eye Disease.
    Ghosh AK; Bacellar-Galdino M; Iqbal S; Pappenhagen NE; Kaja S
    J Ocul Pharmacol Ther; 2022 May; 38(4):294-304. PubMed ID: 35384749
    [No Abstract]   [Full Text] [Related]  

  • 15. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions.
    Marek V; Mélik-Parsadaniantz S; Villette T; Montoya F; Baudouin C; Brignole-Baudouin F; Denoyer A
    Free Radic Biol Med; 2018 Oct; 126():27-40. PubMed ID: 30040995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trehalose augments autophagy to mitigate stress induced inflammation in human corneal cells.
    Panigrahi T; Shivakumar S; Shetty R; D'souza S; Nelson EJR; Sethu S; Jeyabalan N; Ghosh A
    Ocul Surf; 2019 Oct; 17(4):699-713. PubMed ID: 31412290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of New Pharmaceutical Candidates With Antioxidant Activity for the Treatment of Corneal Disorders.
    Higuchi A
    Cornea; 2019 Nov; 38 Suppl 1():S45-S49. PubMed ID: 31397734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant and Osmoprotecting Activity of Taurine in Dry Eye Models.
    Bucolo C; Fidilio A; Platania CBM; Geraci F; Lazzara F; Drago F
    J Ocul Pharmacol Ther; 2018; 34(1-2):188-194. PubMed ID: 28771380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes and diseases of the ocular surface and cornea.
    Gipson IK
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(14):ORSF48-53. PubMed ID: 24335068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of GPR-68 in Human Corneal and Conjunctival Epithelium. Possible indicator and mediator of attrition associated inflammation at the ocular surface.
    van Setten GB
    J Fr Ophtalmol; 2023 Jan; 46(1):19-24. PubMed ID: 36503812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.