These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37979393)

  • 1. The role of Wnt palmitoleylated loop conserved disulfide bonds in Wnt-frizzled complex structural dynamics: Insights from molecular dynamics simulations.
    Dehghanbanadaki N; Mehralitabar H; Sotoudeh R; Naderi-Manesh H
    Comput Biol Med; 2023 Dec; 167():107703. PubMed ID: 37979393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide bond requirements for active Wnt ligands.
    MacDonald BT; Hien A; Zhang X; Iranloye O; Virshup DM; Waterman ML; He X
    J Biol Chem; 2014 Jun; 289(26):18122-36. PubMed ID: 24841207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules.
    Chong JM; Uren A; Rubin JS; Speicher DW
    J Biol Chem; 2002 Feb; 277(7):5134-44. PubMed ID: 11741940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One short cysteine-rich sequence pattern - two different disulfide-bonded structures - a molecular dynamics simulation study.
    Dames SA
    J Pept Sci; 2015 Jun; 21(6):480-94. PubMed ID: 25781269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics.
    Dupuis JH; Wang S; Song C; Yada RY
    PLoS One; 2020; 15(8):e0237884. PubMed ID: 32841243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins.
    Pei J; Grishin NV
    Protein Sci; 2012 Aug; 21(8):1172-84. PubMed ID: 22693159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis.
    Abkevich VI; Shakhnovich EI
    J Mol Biol; 2000 Jul; 300(4):975-85. PubMed ID: 10891282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.
    Zhang L
    Proteins; 2017 Apr; 85(4):665-681. PubMed ID: 28106297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of human serum albumin and role of disulfide bonds.
    Castellanos MM; Colina CM
    J Phys Chem B; 2013 Oct; 117(40):11895-905. PubMed ID: 24066859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorders of FZ-CRD; insights towards FZ-CRD folding and therapeutic landscape.
    Milhem RM; Ali BR
    Mol Med; 2019 Dec; 26(1):4. PubMed ID: 31892318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the binding affinities between SFRP1
    Sunkara RR; Koulgi S; Jani V; Gadewal N; Sonavane U; Joshi R; Waghmare SK
    J Biomol Struct Dyn; 2022 Sep; 40(15):6831-6844. PubMed ID: 33666148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.
    Yan J; Jia H; Ma Z; Ye H; Zhou M; Su L; Liu J; Guo AY
    Gene; 2014 Jan; 533(1):229-39. PubMed ID: 24135643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain.
    Gay JC; Eckenroth BE; Evans CM; Langini C; Carlson S; Lloyd JT; Caflisch A; Glass KC
    Proteins; 2019 Feb; 87(2):157-167. PubMed ID: 30520161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations on pars intercerebralis major peptide-C (PMP-C) reveal the role of glycosylation and disulfide bonds in its enhanced structural stability and function.
    Kaushik S; Mohanty D; Surolia A
    J Biomol Struct Dyn; 2012; 29(5):905-20. PubMed ID: 22292951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between disulfide bonding and N-glycosylation defines SLC4 Na+-coupled transporter extracellular topography.
    Zhu Q; Kao L; Azimov R; Abuladze N; Newman D; Kurtz I
    J Biol Chem; 2015 Feb; 290(9):5391-404. PubMed ID: 25568315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural γ
    Ayan M; Essiz S
    J Mol Model; 2018 Jul; 24(8):206. PubMed ID: 30008086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization.
    DeBruine ZJ; Ke J; Harikumar KG; Gu X; Borowsky P; Williams BO; Xu W; Miller LJ; Xu HE; Melcher K
    Genes Dev; 2017 May; 31(9):916-926. PubMed ID: 28546512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Disulfide-Bond Disruption and Formation in the Thermal Unfolding of Ribonuclease A.
    Krupa P; Sieradzan AK; Mozolewska MA; Li H; Liwo A; Scheraga HA
    J Chem Theory Comput; 2017 Nov; 13(11):5721-5730. PubMed ID: 28942648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox exchange of the disulfides of human two-domain CD4 regulates the conformational dynamics of each domain, providing insight into its mechanisms of control.
    Owen GR; Le D; Stoychev S; Cerutti NM; Papathanasopoulos M
    Biochem Biophys Res Commun; 2018 Mar; 497(2):811-817. PubMed ID: 29470989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.