These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37979514)
21. A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles. Sadowska JM; Power RN; Genoud KJ; Matheson A; González-Vázquez A; Costard L; Eichholz K; Pitacco P; Hallegouet T; Chen G; Curtin CM; Murphy CM; Cavanagh B; Zhang H; Kelly DJ; Boccaccini AR; O'Brien FJ Adv Mater; 2024 Feb; 36(6):e2307639. PubMed ID: 38009631 [TBL] [Abstract][Full Text] [Related]
22. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465 [TBL] [Abstract][Full Text] [Related]
23. Effect of miR-26a-5p on the Wnt/Ca(2+) Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells. Li S; Hu C; Li J; Liu L; Jing W; Tang W; Tian W; Long J Calcif Tissue Int; 2016 Aug; 99(2):174-86. PubMed ID: 27040676 [TBL] [Abstract][Full Text] [Related]
24. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A. Huang Y; Han Y; Guo R; Liu H; Li X; Jia L; Zheng Y; Li W Stem Cell Res Ther; 2020 Jan; 11(1):5. PubMed ID: 31900200 [TBL] [Abstract][Full Text] [Related]
25. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. Luzi E; Marini F; Sala SC; Tognarini I; Galli G; Brandi ML J Bone Miner Res; 2008 Feb; 23(2):287-95. PubMed ID: 18197755 [TBL] [Abstract][Full Text] [Related]
26. Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: a Possible Role in the Osteogenic-angiogenic Coupling. De Mattei M; Grassilli S; Pellati A; Brugnoli F; De Marchi E; Contartese D; Bertagnolo V Stem Cell Rev Rep; 2020 Oct; 16(5):1005-1012. PubMed ID: 32681233 [TBL] [Abstract][Full Text] [Related]
27. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
28. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects. Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565 [TBL] [Abstract][Full Text] [Related]
29. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- Verma NK; Kar AK; Singh A; Jagdale P; Satija NK; Ghosh D; Patnaik S Biomacromolecules; 2021 Jul; 22(7):3069-3083. PubMed ID: 34152738 [TBL] [Abstract][Full Text] [Related]
30. Smurf1-targeting miR-19b-3p-modified BMSCs combined PLLA composite scaffold to enhance osteogenic activity and treat critical-sized bone defects. Xiong A; He Y; Gao L; Li G; Weng J; Kang B; Wang D; Zeng H Biomater Sci; 2020 Nov; 8(21):6069-6081. PubMed ID: 33000773 [TBL] [Abstract][Full Text] [Related]
31. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. Hoseinzadeh S; Atashi A; Soleimani M; Alizadeh E; Zarghami N In Vitro Cell Dev Biol Anim; 2016 Apr; 52(4):479-87. PubMed ID: 26822432 [TBL] [Abstract][Full Text] [Related]
32. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521 [TBL] [Abstract][Full Text] [Related]
33. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Curtin CM; Tierney EG; McSorley K; Cryan SA; Duffy GP; O'Brien FJ Adv Healthc Mater; 2015 Jan; 4(2):223-7. PubMed ID: 25125073 [TBL] [Abstract][Full Text] [Related]
34. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947 [TBL] [Abstract][Full Text] [Related]
35. Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Mencía Castaño I; Curtin CM; Duffy GP; O'Brien FJ Tissue Eng Part A; 2019 Jan; 25(1-2):24-33. PubMed ID: 29490603 [TBL] [Abstract][Full Text] [Related]
36. [MicroRNA-26a-5p targets Wnt5a to regulate osteogenic differentiation of human periodontal ligament stem cell from inflammatory microenvironment]. Zhang KK; Geng YD; Wang SB; Huo L Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 Oct; 54(10):662-669. PubMed ID: 31607001 [No Abstract] [Full Text] [Related]
37. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477 [TBL] [Abstract][Full Text] [Related]
38. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c. Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807 [TBL] [Abstract][Full Text] [Related]
40. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]