These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37979568)

  • 1. Simultaneously enhanced autotrophic-heterotrophic denitrification in iron-based ecological floating bed by plant biomass: Metagenomics insights into microbial communities, functional genes and nitrogen metabolic pathways.
    Peng Y; Gu X; Zhang M; Yan P; Sun S; He S
    Water Res; 2024 Jan; 248():120868. PubMed ID: 37979568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero-valent iron coupled plant biomass for enhancing the denitrification performance of ecological floating bed.
    Peng Y; He S; Gu X; Yan P; Tang L
    Bioresour Technol; 2021 Dec; 341():125820. PubMed ID: 34454238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixotrophic denitrification improvement in ecological floating bed: Interaction between iron scraps and plant biomass.
    Peng Y; Gu X; Yan P; Sun S; Zhang M; Tang L; He S
    Sci Total Environ; 2023 Feb; 861():160718. PubMed ID: 36481157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing sulfur-iron coupling mechanism for enhanced autotrophic denitrification in ecological floating beds.
    Xu F; Peng Y; Gu X; Sun S; Li A; He S
    Bioresour Technol; 2024 Jun; 402():130800. PubMed ID: 38734259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response mechanism of different electron donors for treating secondary effluent in ecological floating bed.
    Sun S; Gu X; Zhang M; Tang L; He S
    Bioresour Technol; 2021 Jul; 332():125083. PubMed ID: 33826983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial response mechanism of plants and zero valent iron in ecological floating bed: Synchronous nitrogen, phosphorus removal and greenhouse gas emission reduction.
    Sun S; Zhang M; Gu X; He S; Tang L
    J Environ Manage; 2022 Dec; 324():116326. PubMed ID: 36182841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction.
    Sun S; Gu X; Zhang M; Tang L; He S; Huang J
    Environ Pollut; 2021 Jan; 268(Pt A):115842. PubMed ID: 33120338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission.
    Sun S; Liu J; Zhang M; He S
    Bioresour Technol; 2020 Mar; 300():122651. PubMed ID: 31887578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of nitrogen removal in a denitrification process elevated by zero-valent iron under low carbon-to-nitrogen ratio.
    Feng ZT; Ma X; Sun YJ; Zhou JM; Liao ZG; He ZC; Ding F; Zhang QQ
    Bioresour Technol; 2023 Oct; 386():129566. PubMed ID: 37506936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of nitrogen polluted water using Fe-C microelectrolysis and biofiltration under mixotrophic conditions.
    Quan X; Zhang H; Liu H; Chen L; Li N
    Chemosphere; 2020 Oct; 257():127272. PubMed ID: 32534299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic sulfide-oxidizing nitrate-reducing bacteria enables the high performance of integrated autotrophic-heterotrophic denitrification (IAHD) process under high sulfide loading.
    Zhang RC; Chen C; Shao B; Wang W; Xu XJ; Zhou X; Xiang YN; Zhao L; Lee DJ; Ren NQ
    Water Res; 2020 Jul; 178():115848. PubMed ID: 32361288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing anoxic denitrification of low C/N ratio wastewater with novel ZVI composite carriers.
    Shi Y; Liu T; Yu H; Quan X
    J Environ Sci (China); 2022 Feb; 112():180-191. PubMed ID: 34955202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient nitrogen removal from stormwater runoff by bioretention system: The construction of plant carbon source-based heterotrophic and sulfur autotrophic denitrification process.
    Li H; Liu Z; Tan C; Zhang X; Zhang Z; Bai X; Wu L; Yang H
    Bioresour Technol; 2022 Apr; 349():126803. PubMed ID: 35124218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH control and microbial community analysis with HCl or CO
    Xing W; Wang Y; Hao T; He Z; Jia F; Yao H
    Water Res; 2020 Jan; 168():115200. PubMed ID: 31655440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial community and nitrate removal by simultaneous heterotrophic and autotrophic denitrification in a bioelectrochemically-assisted constructed wetland.
    Xu D; Xiao E; Xu P; Lin L; Zhou Q; Xu D; Wu Z
    Bioresour Technol; 2017 Dec; 245(Pt A):993-999. PubMed ID: 28946208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms.
    Chen Z; Pang C; Wen Q
    Water Res; 2023 Sep; 243():120422. PubMed ID: 37523921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions.
    Huang C; Liu Q; Li ZL; Ma XD; Hou YN; Ren NQ; Wang AJ
    Water Res; 2021 Jan; 188():116526. PubMed ID: 33125994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater.
    Han F; Zhang M; Shang H; Liu Z; Zhou W
    Bioresour Technol; 2020 Nov; 315():123826. PubMed ID: 32682266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of autotrophic nitrogen removal system based on zero-valent iron (ZVI): performance and mechanism.
    Yang H; Deng L; Xiao Y; Yang H; Wang H; Zheng D
    Water Sci Technol; 2020 Dec; 82(12):2990-3002. PubMed ID: 33341787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.