These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. Darawshi O; Yassin O; Shmuel M; Wek RC; Mahdizadeh SJ; Eriksson LA; Hatzoglou M; Tirosh B J Biol Chem; 2024 Aug; 300(8):107575. PubMed ID: 39013537 [TBL] [Abstract][Full Text] [Related]
5. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. Wang X; Fonseca BD; Tang H; Liu R; Elia A; Clemens MJ; Bommer UA; Proud CG J Biol Chem; 2008 Nov; 283(45):30482-92. PubMed ID: 18676370 [TBL] [Abstract][Full Text] [Related]
6. General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in Yuan W; Guo S; Gao J; Zhong M; Yan G; Wu W; Chao Y; Jiang Y J Biol Chem; 2017 Feb; 292(7):2660-2669. PubMed ID: 28057755 [TBL] [Abstract][Full Text] [Related]
7. Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. Zaborske JM; Wu X; Wek RC; Pan T BMC Biochem; 2010 Aug; 11():29. PubMed ID: 20684782 [TBL] [Abstract][Full Text] [Related]
8. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374 [TBL] [Abstract][Full Text] [Related]
9. Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress. Misra J; Holmes MJ; T Mirek E; Langevin M; Kim HG; Carlson KR; Watford M; Dong XC; Anthony TG; Wek RC Nucleic Acids Res; 2021 Jun; 49(10):5726-5742. PubMed ID: 34023907 [TBL] [Abstract][Full Text] [Related]
10. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692 [TBL] [Abstract][Full Text] [Related]
11. mTOR Ser-2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action. Soliman GA; Acosta-Jaquez HA; Dunlop EA; Ekim B; Maj NE; Tee AR; Fingar DC J Biol Chem; 2010 Mar; 285(11):7866-79. PubMed ID: 20022946 [TBL] [Abstract][Full Text] [Related]
12. AAA + ATPase Thorase inhibits mTOR signaling through the disassembly of the mTOR complex 1. Umanah GKE; Abalde-Atristain L; Khan MR; Mitra J; Dar MA; Chang M; Tangella K; McNamara A; Bennett S; Chen R; Aggarwal V; Cortes M; Worley PF; Ha T; Dawson TM; Dawson VL Nat Commun; 2022 Aug; 13(1):4836. PubMed ID: 35977929 [TBL] [Abstract][Full Text] [Related]
13. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Hueso G; Aparicio-Sanchis R; Montesinos C; Lorenz S; Murguía JR; Serrano R Biochem J; 2012 Jan; 441(1):255-64. PubMed ID: 21919885 [TBL] [Abstract][Full Text] [Related]
14. The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. Harding HP; Ordonez A; Allen F; Parts L; Inglis AJ; Williams RL; Ron D Elife; 2019 Nov; 8():. PubMed ID: 31749445 [TBL] [Abstract][Full Text] [Related]
15. Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Kim Y; Sundrud MS; Zhou C; Edenius M; Zocco D; Powers K; Zhang M; Mazitschek R; Rao A; Yeo CY; Noss EH; Brenner MB; Whitman M; Keller TL Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8900-8911. PubMed ID: 32253314 [TBL] [Abstract][Full Text] [Related]
16. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Wek SA; Zhu S; Wek RC Mol Cell Biol; 1995 Aug; 15(8):4497-506. PubMed ID: 7623840 [TBL] [Abstract][Full Text] [Related]
17. The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels. McFarland MR; Keller CD; Childers BM; Adeniyi SA; Corrigall H; Raguin A; Romano MC; Stansfield I Nucleic Acids Res; 2020 Apr; 48(6):3071-3088. PubMed ID: 32016368 [TBL] [Abstract][Full Text] [Related]
18. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. Visweswaraiah J; Lageix S; Castilho BA; Izotova L; Kinzy TG; Hinnebusch AG; Sattlegger E J Biol Chem; 2011 Oct; 286(42):36568-79. PubMed ID: 21849502 [TBL] [Abstract][Full Text] [Related]
19. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Ozturk DG; Kocak M; Akcay A; Kinoglu K; Kara E; Buyuk Y; Kazan H; Gozuacik D Autophagy; 2019 Mar; 15(3):375-390. PubMed ID: 30290719 [TBL] [Abstract][Full Text] [Related]
20. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Al-Baghdadi RJT; Nikonorova IA; Mirek ET; Wang Y; Park J; Belden WJ; Wek RC; Anthony TG Sci Rep; 2017 Apr; 7(1):1272. PubMed ID: 28455513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]