These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37979765)
1. Bioconversion of glycerol into polyhydroxyalkanoates through an atypical metabolism shift using Priestia megaterium during fermentation processes: A statistical analysis of carbon and nitrogen source concentrations. Shahid S; Mosrati R; Corroler D; Amiel C; Gaillard JL Int J Biol Macromol; 2024 Jan; 256(Pt 1):128116. PubMed ID: 37979765 [TBL] [Abstract][Full Text] [Related]
2. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. Shahid S; Mosrati R; Ledauphin J; Amiel C; Fontaine P; Gaillard JL; Corroler D J Biosci Bioeng; 2013 Sep; 116(3):302-8. PubMed ID: 23548274 [TBL] [Abstract][Full Text] [Related]
3. Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: Statistical optimization and characterization. Israni N; Shivakumar S Int J Biol Macromol; 2020 Apr; 148():20-30. PubMed ID: 31926923 [TBL] [Abstract][Full Text] [Related]
4. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer by recombinant Bacillus megaterium in fed-batch bioreactors. Akdoğan M; Çelik E Bioprocess Biosyst Eng; 2021 Feb; 44(2):403-416. PubMed ID: 32995978 [TBL] [Abstract][Full Text] [Related]
5. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
6. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions. Poblete-Castro I; Binger D; Oehlert R; Rohde M BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606 [TBL] [Abstract][Full Text] [Related]
7. Revealing the Phenotypic and Genomic Background for PHA Production from Rapeseed-Biodiesel Crude Glycerol Using Lascu I; Tănase AM; Jablonski P; Chiciudean I; Preda MI; Avramescu S; Irgum K; Stoica I Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430242 [TBL] [Abstract][Full Text] [Related]
8. Characterization of medium-chain-length polyhydroxyalkanoate biosynthesis by Pseudomonas mosselii TO7 using crude glycerol. Liu MH; Chen YJ; Lee CY Biosci Biotechnol Biochem; 2018 Mar; 82(3):532-539. PubMed ID: 29338575 [TBL] [Abstract][Full Text] [Related]
9. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; O'Connor KE Appl Microbiol Biotechnol; 2012 Aug; 95(3):623-33. PubMed ID: 22581066 [TBL] [Abstract][Full Text] [Related]
10. [Production of polyhydroxyalkanoates by a mixed culture]. Zhang Y; Sun X; Chen B; Dong Z Wei Sheng Wu Xue Bao; 2003 Dec; 43(6):799-804. PubMed ID: 16276905 [TBL] [Abstract][Full Text] [Related]
11. Enhanced co-production of medium-chain-length polyhydroxyalkanoates and phenazines from crude glycerol by high cell density cultivation of Pseudomonas chlororaphis in membrane bioreactor. Aloui H; Khomlaem C; Torres CAV; Freitas F; Reis MAM; Kim BS Int J Biol Macromol; 2022 Jun; 211():545-555. PubMed ID: 35577193 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Fu J; Sharma U; Sparling R; Cicek N; Levin DB Can J Microbiol; 2014 Jul; 60(7):461-8. PubMed ID: 24983445 [TBL] [Abstract][Full Text] [Related]
13. Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium. Kumar V; Fox BG; Takasuka TE Bioresour Technol; 2023 May; 376():128934. PubMed ID: 36940873 [TBL] [Abstract][Full Text] [Related]
14. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers. Zhuang Q; Qi Q Microb Cell Fact; 2019 Aug; 18(1):135. PubMed ID: 31409350 [TBL] [Abstract][Full Text] [Related]
15. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
16. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia. Burniol-Figols A; Varrone C; Daugaard AE; Le SB; Skiadas IV; Gavala HN Water Res; 2018 Jan; 128():255-266. PubMed ID: 29107910 [TBL] [Abstract][Full Text] [Related]
17. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9. Liu Y; Zhao W; Wang S; Huo K; Chen Y; Guo H; Wang S; Liu R; Yang C Int J Biol Macromol; 2022 Dec; 223(Pt A):240-251. PubMed ID: 36347367 [TBL] [Abstract][Full Text] [Related]
18. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Muangwong A; Boontip T; Pachimsawat J; Napathorn SC Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857 [TBL] [Abstract][Full Text] [Related]
19. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Chanasit W; Hodgson B; Sudesh K; Umsakul K Biosci Biotechnol Biochem; 2016 Jul; 80(7):1440-50. PubMed ID: 26981955 [TBL] [Abstract][Full Text] [Related]
20. Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste. Ray S; Prajapati V; Patel K; Trivedi U Int J Biol Macromol; 2016 May; 86():741-9. PubMed ID: 26851207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]