BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37979845)

  • 1. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology.
    Henke AN; Chilukuri S; Langan LM; Brooks BW
    Sci Total Environ; 2024 Feb; 912():168455. PubMed ID: 37979845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omics for aquatic ecotoxicology: control of extraneous variability to enhance the analysis of environmental effects.
    Simmons DB; Benskin JP; Cosgrove JR; Duncker BP; Ekman DR; Martyniuk CJ; Sherry JP
    Environ Toxicol Chem; 2015 Aug; 34(8):1693-704. PubMed ID: 25827364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are we forgetting the "proteomics" in multi-omics ecotoxicology?
    Liang X; Martyniuk CJ; Simmons DBD
    Comp Biochem Physiol Part D Genomics Proteomics; 2020 Dec; 36():100751. PubMed ID: 33142247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative proteomics in teleost fish: insights and challenges for neuroendocrine and neurotoxicology research.
    Martyniuk CJ; Popesku JT; Chown B; Denslow ND; Trudeau VL
    Gen Comp Endocrinol; 2012 May; 176(3):314-20. PubMed ID: 22202605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of recent proteomic applications in aquatic toxicology.
    Sanchez BC; Ralston-Hooper K; Sepúlveda MS
    Environ Toxicol Chem; 2011 Feb; 30(2):274-82. PubMed ID: 21072841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the reliability and reproducibility of aquatic ecotoxicology: Learn lessons from aquaculture research.
    Wang N
    Ecotoxicol Environ Saf; 2018 Oct; 161():785-794. PubMed ID: 29960649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spotlight on environmental omics and toxicology: a long way in a short time.
    Martyniuk CJ; Simmons DB
    Comp Biochem Physiol Part D Genomics Proteomics; 2016 Sep; 19():97-101. PubMed ID: 27398986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology.
    Martyniuk CJ; Alvarez S; Denslow ND
    Ecotoxicol Environ Saf; 2012 Feb; 76(2):3-10. PubMed ID: 22056798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protecting our environment, a motivating outdoor game for proteomics!
    Armengaud J
    Proteomics; 2022 May; 22(10):e2200055. PubMed ID: 35452157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry in environmental toxicology.
    Groh KJ; Suter MJ
    Chimia (Aarau); 2014; 68(3):140-5. PubMed ID: 24801844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental toxicology and omics: A question of sex.
    Liang X; Feswick A; Simmons D; Martyniuk CJ
    J Proteomics; 2018 Feb; 172():152-164. PubMed ID: 29037750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted analytical toxicology: simultaneous determination of 17α-ethynylestradiol and the estrogen-induced vitellogenin biomarker.
    Yang F; Huang W; Xie W; Lu C; Liu W
    Environ Int; 2015 Jan; 74():119-24. PubMed ID: 25454228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment.
    Gouveia D; Almunia C; Cogne Y; Pible O; Degli-Esposti D; Salvador A; Cristobal S; Sheehan D; Chaumot A; Geffard O; Armengaud J
    J Proteomics; 2019 Apr; 198():66-77. PubMed ID: 30529745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure science and the U.S. EPA National Center for Computational Toxicology.
    Cohen Hubal EA; Richard AM; Shah I; Gallagher J; Kavlock R; Blancato J; Edwards SW
    J Expo Sci Environ Epidemiol; 2010 May; 20(3):231-6. PubMed ID: 18985077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory aspects on the use of fish embryos in environmental toxicology.
    Halder M; Léonard M; Iguchi T; Oris JT; Ryder K; Belanger SE; Braunbeck TA; Embry MR; Whale G; Norberg-King T; Lillicrap A
    Integr Environ Assess Manag; 2010 Jul; 6(3):484-91. PubMed ID: 20821708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation?
    Fent K; Sumpter JP
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):25-39. PubMed ID: 22099342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key Opportunities to Replace, Reduce, and Refine Regulatory Fish Acute Toxicity Tests.
    Burden N; Benstead R; Benyon K; Clook M; Green C; Handley J; Harper N; Maynard SK; Mead C; Pearson A; Ryder K; Sheahan D; van Egmond R; Wheeler JR; Hutchinson TH
    Environ Toxicol Chem; 2020 Oct; 39(10):2076-2089. PubMed ID: 32681761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins in ecotoxicology - how, why and why not?
    Lemos MF; Soares AM; Correia AC; Esteves AC
    Proteomics; 2010 Feb; 10(4):873-87. PubMed ID: 19953548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crab Carcinus maenas as a suitable experimental model in ecotoxicology.
    Rodrigues ET; Pardal MÂ
    Environ Int; 2014 Sep; 70():158-82. PubMed ID: 24934856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards improved behavioural testing in aquatic toxicology: Acclimation and observation times are important factors when designing behavioural tests with fish.
    Melvin SD; Petit MA; Duvignacq MC; Sumpter JP
    Chemosphere; 2017 Aug; 180():430-436. PubMed ID: 28419956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.