BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37979858)

  • 1. The interactions between olivine dissolution and phytoplankton in seawater: Potential implications for ocean alkalinization.
    Li C; Liu X; Li Y; Jiang Y; Guo X; Hutchins DA; Ma J; Lin X; Dai M
    Sci Total Environ; 2024 Feb; 912():168571. PubMed ID: 37979858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice husk as a potential source of silicate to oceanic phytoplankton.
    Shetye S; Pratihary A; Shenoy D; Kurian S; Gauns M; Uskaikar H; Naik B; Nandakumar K; Borker S
    Sci Total Environ; 2023 Jun; 879():162941. PubMed ID: 36934917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olivine avoidance behaviour by marine gastropods (Littorina littorea L.) and amphipods (Gammarus locusta L.) within the context of ocean alkalinity enhancement.
    Flipkens G; Dujardin V; Salden J; T'Jollyn K; Town RM; Blust R
    Ecotoxicol Environ Saf; 2024 Jan; 270():115840. PubMed ID: 38104435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.
    Yuan W; Gao G; Shi Q; Xu Z; Wu H
    Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum.
    Tong S; Xu D; Wang Y; Zhang X; Li Y; Wu H; Ye N
    Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal bioaccumulation and effects of olivine sand exposure on benthic marine invertebrates.
    Jankowska E; Montserrat F; Romaniello SJ; Walworth NG; Andrews MG
    Chemosphere; 2024 Jun; 358():142195. PubMed ID: 38692368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous carbonation of peridotites for carbon utilisation: a critical review.
    Rashid MI; Benhelal E; Anderberg L; Farhang F; Oliver T; Rayson MS; Stockenhuber M
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75161-75183. PubMed ID: 36129648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable carbon sequestration via olivine based ocean alkalinity enhancement in the east and South China Sea: Adhering to environmental norms for nickel and chromium.
    Zhu T; Zheng L; Li F; Liu J; Zhuang W
    Sci Total Environ; 2024 Jun; 930():172853. PubMed ID: 38685434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional responses of smaller and larger diatoms to gradual CO
    Li W; Ding J; Li F; Wang T; Yang Y; Li Y; Campbell DA; Gao K
    Sci Total Environ; 2019 Aug; 680():79-90. PubMed ID: 31102831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations.
    Jin P; Gao K
    Mar Pollut Bull; 2016 Feb; 103(1-2):101-108. PubMed ID: 26746379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geoengineering potential of artificially enhanced silicate weathering of olivine.
    Köhler P; Hartmann J; Wolf-Gladrow DA
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20228-33. PubMed ID: 21059941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure.
    Dai X; Zhang J; Zeng X; Huang J; Lin J; Lu Y; Liang S; Ye M; Xiao M; Zhao J; Overmans S; Xia J; Jin P
    Mar Pollut Bull; 2022 Oct; 183():114056. PubMed ID: 36058179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olivine Dissolution in Seawater: Implications for CO
    Montserrat F; Renforth P; Hartmann J; Leermakers M; Knops P; Meysman FJ
    Environ Sci Technol; 2017 Apr; 51(7):3960-3972. PubMed ID: 28281750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coccolithophores and diatoms resilient to ocean alkalinity enhancement: A glimpse of hope?
    Gately JA; Kim SM; Jin B; Brzezinski MA; Iglesias-Rodriguez MD
    Sci Adv; 2023 Jun; 9(24):eadg6066. PubMed ID: 37315127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO
    Shi D; Hong H; Su X; Liao L; Chang S; Lin W
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea).
    Sharma D; Biswas H; Bandyopadhyay D
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19244-19261. PubMed ID: 34714479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system.
    Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AU; Cardinal D; Mandeng-Yogo M; Ray D
    Mar Environ Res; 2020 Mar; 155():104880. PubMed ID: 32072984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinetics of siderophore-mediated olivine dissolution.
    Torres MA; Dong S; Nealson KH; West AJ
    Geobiology; 2019 Jul; 17(4):401-416. PubMed ID: 30734464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.