These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37980051)
1. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions. Zhou YH; Huang WX; Nie ZY; Liu HC; Liu Y; Wang C; Xia JL; Shu WS J Environ Sci (China); 2024 Mar; 137():681-700. PubMed ID: 37980051 [TBL] [Abstract][Full Text] [Related]
2. Antimony and arsenic partitioning during Fe Karimian N; Johnston SG; Burton ED Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031 [TBL] [Abstract][Full Text] [Related]
3. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. Chen HR; Zhang DR; Li Q; Nie ZY; Pakostova E Water Res; 2022 Sep; 223():118957. PubMed ID: 35970106 [TBL] [Abstract][Full Text] [Related]
4. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions. Liu L; Guo D; Qiu G; Liu C; Ning Z J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250 [TBL] [Abstract][Full Text] [Related]
5. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485 [TBL] [Abstract][Full Text] [Related]
6. The pH-dependent role of different manganese oxides in the fate of arsenic during microbial reduction of arsenate-bearing goethite. Liu X; Cai X; Yin N; Huang X; Wang P; Basheer MZ; Fan C; Chang X; Hu Z; Sun G; Cui Y Water Res; 2024 Sep; 261():121988. PubMed ID: 38986281 [TBL] [Abstract][Full Text] [Related]
7. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Cai X; Yin N; Wang P; Du H; Liu X; Cui Y J Hazard Mater; 2020 Nov; 398():122886. PubMed ID: 32512445 [TBL] [Abstract][Full Text] [Related]
8. Arsenic behavior during gallic acid-induced redox transformation of jarosite under acidic conditions. Tang Y; Xie Y; Lu G; Ye H; Dang Z; Wen Z; Tao X; Xie C; Yi X Chemosphere; 2020 Sep; 255():126938. PubMed ID: 32388258 [TBL] [Abstract][Full Text] [Related]
9. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite. Karimian N; Johnston SG; Burton ED Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133 [TBL] [Abstract][Full Text] [Related]
10. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821 [TBL] [Abstract][Full Text] [Related]
11. (Bio)dissolution of arsenopyrite coupled with multiple proportions of pyrite: Emphasis on the mobilization and existential state of arsenic. Tang A; Wang J; Zhang Y; Hong M; Liu Y; Yang B Chemosphere; 2023 Apr; 321():138128. PubMed ID: 36775027 [TBL] [Abstract][Full Text] [Related]
12. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition. Cai X; Zhang Z; Yin N; Lu W; Du H; Yang M; Cui L; Chen S; Cui Y J Hazard Mater; 2022 Jul; 433():128778. PubMed ID: 35358812 [TBL] [Abstract][Full Text] [Related]
13. Molecular structures of dissolved and colloidal As Zhang D; Cao R; Song Y; Wang Y; Zhang P; Wang Y; Xiao F; Wang S; Jia Y J Hazard Mater; 2022 May; 430():128266. PubMed ID: 35168098 [TBL] [Abstract][Full Text] [Related]
14. Novel insights into the kinetics and mechanism of arsenopyrite bio-dissolution enhanced by pyrite. Zhang DR; Zhang RY; Zhu XT; Kong WB; Cao C; Zheng L; Pakostova E J Hazard Mater; 2024 May; 470():134193. PubMed ID: 38569341 [TBL] [Abstract][Full Text] [Related]
15. Correlation Between Fe/S/As Speciation Transformation and Depth Distribution of Zhou YH; Wang C; Liu HC; Xue Z; Nie ZY; Liu Y; Wan JL; Yang Y; Shu WS; Xia JL Front Microbiol; 2021; 12():819804. PubMed ID: 35222314 [TBL] [Abstract][Full Text] [Related]
16. Effects of natural organic matter on the coprecipitation of arsenic with iron. Kim EJ; Hwang BR; Baek K Environ Geochem Health; 2015 Dec; 37(6):1029-39. PubMed ID: 25754698 [TBL] [Abstract][Full Text] [Related]
17. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038 [TBL] [Abstract][Full Text] [Related]
18. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389 [TBL] [Abstract][Full Text] [Related]
19. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
20. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II). Wu X; Yang J; Liu S; He Z; Wang Y; Qin W; Si Y Chemosphere; 2022 Dec; 309(Pt 2):136793. PubMed ID: 36220433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]