These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37980422)

  • 1. Morphological evolution of bird wings follows a mechanical sensitivity gradient determined by the aerodynamics of flapping flight.
    Rader JA; Hedrick TL
    Nat Commun; 2023 Nov; 14(1):7494. PubMed ID: 37980422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance.
    Rader JA; Hedrick TL; He Y; Waldrop LD
    Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coracoid strength as an indicator of wing-beat propulsion in birds.
    Akeda T; Fujiwara SI
    J Anat; 2023 Mar; 242(3):436-446. PubMed ID: 36380603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands.
    Blanke A
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of flight in bats: narrowing the field of plausible hypotheses.
    Bishop KL
    Q Rev Biol; 2008 Jun; 83(2):153-69. PubMed ID: 18605533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incipient wing flapping enhances aerial performance of a robotic paravian model.
    Sathe EA; Chronister NJ; Dudley R
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37253379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model coupling biomechanics and fluid dynamics for the simulation of controlled flapping flight.
    Colognesi V; Ronsse R; Chatelain P
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33470974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings.
    Fan X; Swartz S; Breuer K
    J R Soc Interface; 2022 Sep; 19(194):20220315. PubMed ID: 36128710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.
    Heers AM; Baier DB; Jackson BE; Dial KP
    PLoS One; 2016; 11(4):e0153446. PubMed ID: 27100994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characteristics of the rigid elytra in a bamboo weevil beetle Cyrtotrachelus buqueti.
    Li X; Zheng Y
    IET Nanobiotechnol; 2022 Sep; 16(7-8):273-283. PubMed ID: 35962575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape, flapping and flexion: wing and fin design for forward flight.
    Combes SA; Daniel TL
    J Exp Biol; 2001 Jun; 204(Pt 12):2073-85. PubMed ID: 11441049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.