These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37980823)

  • 1. A fractional derivative model for nuclides transport in heterogeneous fractured media.
    Wang Z; Sun H; Tang Z; Li B; Qian J; Zhang C
    J Contam Hydrol; 2023 Nov; 259():104265. PubMed ID: 37980823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights about transport mechanisms and fracture flow channeling from multi-scale observations of tracer dispersion in shallow fractured crystalline rock.
    Guihéneuf N; Bour O; Boisson A; Le Borgne T; Becker MW; Nigon B; Wajiduddin M; Ahmed S; Maréchal JC
    J Contam Hydrol; 2017 Nov; 206():18-33. PubMed ID: 28965710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
    Garrard RM; Zhang Y; Wei S; Sun H; Qian J
    Ground Water; 2017 Nov; 55(6):857-870. PubMed ID: 28692785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox.
    Cortis A; Berkowitz B
    Ground Water; 2005; 43(6):947-50. PubMed ID: 16324017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media.
    Sun H; Zhang Y; Chen W; Reeves DM
    J Contam Hydrol; 2014 Feb; 157():47-58. PubMed ID: 24299661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling solute transport through saturated zone ground water at 10 km scale: example from the Yucca Mountain license application.
    Kelkar S; Ding M; Chu S; Robinson BA; Arnold B; Meijer A; Eddebbarh AA
    J Contam Hydrol; 2010 Sep; 117(1-4):7-25. PubMed ID: 20633953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.
    Wang L; Cardenas MB
    J Contam Hydrol; 2015 Aug; 179():47-54. PubMed ID: 26042625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiment and Simulation of Non-Reactive Solute Transport in Porous Media.
    Li Y; Bian J; Wang Q; Li T
    Ground Water; 2022 May; 60(3):330-343. PubMed ID: 34850387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer.
    Dong P; Yin M; Zhang Y; Chen K; Finkel M; Grathwohl P; Zheng C
    J Contam Hydrol; 2023 Sep; 258():104231. PubMed ID: 37597333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk.
    Xiong Y; Huang G; Huang Q
    J Contam Hydrol; 2006 Aug; 86(3-4):163-75. PubMed ID: 16687188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.
    Baeumer B; Zhang Y; Schumer R
    Ground Water; 2015; 53(5):699-708. PubMed ID: 25214174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of radionuclide electromigration in intact granite: An kinetic adsorption-advection-dispersion model and its application.
    Li X; Tan K; Liu L; Li Y; Meng S; Li X; Li C; Wang X; Tian Y
    Sci Total Environ; 2024 Aug; 937():173534. PubMed ID: 38802020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-discrete finite element method for a class of time-fractional diffusion equations.
    Sun H; Chen W; Sze KY
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120268. PubMed ID: 23547234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian inversion of laboratory experiments of transport through limestone fractures.
    Lehmann F; Rajabi MM; Belfort B; Delay F; Fahs M; Ackerer P; Younes A
    J Contam Hydrol; 2022 Aug; 249():104045. PubMed ID: 35759890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles.
    Hu Y; Xu W; Zhan L; Li J; Chen Y
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13534-13549. PubMed ID: 32026373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous transport of colloids and solutes in a shear zone.
    Kosakowski G
    J Contam Hydrol; 2004 Aug; 72(1-4):23-46. PubMed ID: 15240165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.
    Mazurek M; Jakob A; Bossart P
    J Contam Hydrol; 2003 Mar; 61(1-4):157-74. PubMed ID: 12598102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of one-dimensional scale-dependent fractional advection-dispersion.
    Huang G; Huang Q; Zhan H
    J Contam Hydrol; 2006 May; 85(1-2):53-71. PubMed ID: 16494965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eulerian derivation of the fractional advection-dispersion equation.
    Schumer R; Benson DA; Meerschaert MM; Wheatcraft SW
    J Contam Hydrol; 2001 Mar; 48(1-2):69-88. PubMed ID: 11291482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption and desorption of Sr onto a rough single fractured granite.
    Zang J; Wang J; Han X; Yao H; Fu B; Zhao J; Li B; Chen J
    J Contam Hydrol; 2020 Jan; 228():103558. PubMed ID: 31740008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.