These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37980823)

  • 41. Fractional derivative method for anomalous aquitard flow in a leaky aquifer system with depth-decaying aquitard hydraulic conductivity.
    Li Y; Zhou Z; Zhang N
    Water Res; 2024 Feb; 249():120957. PubMed ID: 38070345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of small-scale heterogeneities on contaminant transport in fractured crystalline rock.
    Mettier R; Kosakowski G; Kolditz O
    Ground Water; 2006; 44(5):687-96. PubMed ID: 16961491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simulating conservative tracers in fractured till under realistic timescales.
    Helmke MF; Simpkins WW; Horton R
    Ground Water; 2005; 43(6):877-89. PubMed ID: 16324009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of
    Kim WS; Han S; Ahn J; Um W
    Environ Geochem Health; 2019 Feb; 41(1):411-425. PubMed ID: 29796958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site.
    Riva M; Guadagnini A; Fernandez-Garcia D; Sanchez-Vila X; Ptak T
    J Contam Hydrol; 2008 Oct; 101(1-4):1-13. PubMed ID: 18799231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analytical solutions for contaminant fate and transport in parallel plate fracture-rock matrix systems with poiseuille flow.
    Huang J; Christ J; Goltz MN
    J Hydrol (Amst); 2021 May; 596():. PubMed ID: 34334810
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance.
    Dittrich TM; Reimus PW
    J Environ Manage; 2016 Jan; 165():124-132. PubMed ID: 26431639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling solute transport in karst fissure dual porosity system and application: A case study in an arsenic contamination site.
    Huang K; Luo X; Zheng Z
    PLoS One; 2020; 15(6):e0234998. PubMed ID: 32584869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An interpretation of potential scale dependence of the effective matrix diffusion coefficient.
    Liu HH; Zhang YQ; Zhou Q; Molz FJ
    J Contam Hydrol; 2007 Feb; 90(1-2):41-57. PubMed ID: 17067718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
    Mukhopadhyay S; Liu HH; Spycher N; Kennedy BM
    J Contam Hydrol; 2013 Nov; 154():42-52. PubMed ID: 24077359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and application of an advection-dispersion model for data analysis of electromigration experiments with intact rock cores.
    Meng S; Li X; Siitari-Kauppi M; Liu L
    J Contam Hydrol; 2020 May; 231():103618. PubMed ID: 32147205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fractional flow in fractured chalk; a flow and tracer test revisited.
    Odling NE; West LJ; Hartmann S; Kilpatrick A
    J Contam Hydrol; 2013 Apr; 147():96-111. PubMed ID: 23501945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite.
    Cheng HP; Li MH; Li S
    J Contam Hydrol; 2003 Mar; 61(1-4):371-85. PubMed ID: 12598118
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence.
    Wang L; Bayani Cardenas M
    J Contam Hydrol; 2017 Mar; 198():1-10. PubMed ID: 28214619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A stochastic multi-channel model for solute transport--analysis of tracer tests in fractured rock.
    Neretnieks I
    J Contam Hydrol; 2002 Apr; 55(3-4):175-211. PubMed ID: 11999629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of a biofilm on solute diffusion in fractured porous media.
    Charbonneau A; Novakowski K; Ross N
    J Contam Hydrol; 2006 May; 85(3-4):212-28. PubMed ID: 16564602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study on Tritium and Iodine Species Transport through Porous Granite: A Non-Sorption Effect by Anion Exclusion.
    Shi Y; Yang S; Chen W; Xiong W; Zhang A; Yu Z; Lian B; Lee CP
    Toxics; 2022 Sep; 10(9):. PubMed ID: 36136505
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gaining insights into reactive fluid-fractured rock systems using the temporal moments of a tracer breakthrough curve.
    Mukhopadhyay S; Liu HH; Spycher N; Kennedy BM
    J Contam Hydrol; 2014 Mar; 158():23-37. PubMed ID: 24424264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media.
    Maina FH; Ackerer P; Younes A; Guadagnini A; Berkowitz B
    J Contam Hydrol; 2018 May; 212():55-64. PubMed ID: 28651901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental and numerical investigations of effect of column length on retardation factor determination: a case study of cesium transport in crushed granite.
    Li MH; Wang TH; Teng SP
    J Hazard Mater; 2009 Feb; 162(1):530-5. PubMed ID: 18579288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.