These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37980994)

  • 1. Strategies for optimizing biovivianite production using dissimilatory Fe(III)-reducing bacteria.
    Eshun LE; Coker VS; Shaw S; Lloyd JR
    Environ Res; 2024 Feb; 242():117667. PubMed ID: 37980994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.
    Azam HM; Finneran KT
    Chemosphere; 2014 Feb; 97():1-9. PubMed ID: 24210595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products.
    O'Loughlin EJ; Gorski CA; Scherer MM; Boyanov MI; Kemner KM
    Environ Sci Technol; 2010 Jun; 44(12):4570-6. PubMed ID: 20476735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite.
    Bae S; Joo JB; Lee W
    J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater.
    Wang S; An J; Wan Y; Du Q; Wang X; Cheng X; Li N
    Environ Sci Technol; 2018 Dec; 52(23):13863-13870. PubMed ID: 30412394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bound phosphate on the bioreduction of lepidocrocite (γ-FeOOH) and maghemite (γ-Fe2O3) and formation of secondary minerals.
    O'Loughlin EJ; Boyanov MI; Flynn TM; Gorski CA; Hofmann SM; McCormick ML; Scherer MM; Kemner KM
    Environ Sci Technol; 2013 Aug; 47(16):9157-66. PubMed ID: 23909690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.
    Etique M; Jorand FP; Ruby C
    Geobiology; 2016 May; 14(3):237-54. PubMed ID: 26715461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular polymeric substance induces biogenesis of vivianite under inorganic phosphate-free conditions.
    Hao X; Tang J; Yi X; Gao K; Yao Q; Feng C; Huang W; Dang Z
    J Environ Sci (China); 2022 Oct; 120():115-124. PubMed ID: 35623765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II).
    Islam FS; Pederick RL; Gault AG; Adams LK; Polya DA; Charnock JM; Lloyd JR
    Appl Environ Microbiol; 2005 Dec; 71(12):8642-8. PubMed ID: 16332858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate imposed limitations on biological reduction and alteration of ferrihydrite.
    Borch T; Masue Y; Kukkadapu RK; Fendorf S
    Environ Sci Technol; 2007 Jan; 41(1):166-72. PubMed ID: 17265943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facet Dependence of Biosynthesis of Vivianite from Iron Oxides by
    Luo X; Wen L; Zhou L; Yuan Y
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury Reduction by Nanoparticulate Vivianite.
    Etique M; Bouchet S; Byrne JM; ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2021 Mar; 55(5):3399-3407. PubMed ID: 33554594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate Recovery from Aqueous Solutions via Vivianite Crystallization: Interference of Fe
    Yang X; Zhang C; Zhang X; Deng S; Cheng X; Waite TD
    Environ Sci Technol; 2023 Feb; 57(5):2105-2117. PubMed ID: 36688915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement.
    Wu Y; Wang C; Wang S; An J; Liang D; Zhao Q; Tian L; Wu Y; Wang X; Li N
    Water Res; 2021 Feb; 189():116663. PubMed ID: 33307376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Identification of Cr(VI) Removal Mechanism on Vivianite Surface.
    Bae S; Sihn Y; Kyung D; Yoon S; Eom T; Kaplan U; Kim H; Schäfer T; Han S; Lee W
    Environ Sci Technol; 2018 Sep; 52(18):10647-10656. PubMed ID: 30141617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of vivianite in sewage sludge by a phosphate extraction protocol validated by PXRD, SEM-EDS, and
    Wang Q; Kim TH; Reitzel K; Almind-Jørgensen N; Nielsen UG
    Water Res; 2021 Sep; 202():117411. PubMed ID: 34274899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation.
    Gao K; Hu Y; Guo C; Ke C; He C; Hao X; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2020 Oct; 202():110921. PubMed ID: 32800256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.