BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37981280)

  • 21. Hairpin loop-enhanced fluorescent copper nanoclusters and application in S1 nuclease detection.
    Peng XS; Chen SY; Ou LJ; Luo FW; Qin SW; Sun AM
    Analyst; 2018 Jan; 143(2):415-419. PubMed ID: 29227487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histidine-capped copper nanoclusters for in situ amplified fluorescence monitoring of doxycycline through inner filter effect.
    Zhang S; Ma J; Wu Y; Lu J; Guo Y
    Luminescence; 2024 Jan; 39(1):e4677. PubMed ID: 38286601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging.
    Li Y; Feng L; Yan W; Hussain I; Su L; Tan B
    Nanoscale; 2019 Jan; 11(3):1286-1294. PubMed ID: 30603761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters.
    Wu NN; Chen LG; Wang HB
    Appl Spectrosc; 2023 Oct; 77(10):1206-1213. PubMed ID: 37545405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Small Moiety of a Large Ligand: Tyrosine Templated Copper Nanoclusters.
    Chakraborty S; Mukherjee S
    J Phys Chem Lett; 2021 Apr; 12(13):3266-3273. PubMed ID: 33764772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of copper nanoclusters from Bacopa monnieri leaves for fluorescence sensing of dichlorvos.
    Sadhu VA; Jha S; Park TJ; Kailasa SK
    Luminescence; 2023 Nov; 38(11):1872-1882. PubMed ID: 37555766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper nanoclusters stabilized by D-penicillamine for ultrasensitive and visual detection of oxytetracycline.
    Wang T; Liu W; Tian S; Tian D
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122286. PubMed ID: 36592593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the Interaction of Bovine Serum Albumin with Copper Nanoclusters: Realization of Binding Pathway Different from Protein Corona.
    Akhuli A; Chakraborty D; Agrawal AK; Sarkar M
    Langmuir; 2021 Feb; 37(5):1823-1837. PubMed ID: 33502208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of neomycin and Rev peptide binding to the Rev responsive element of HIV-1 as determined by fluorescence and NMR spectroscopy.
    Lacourciere KA; Stivers JT; Marino JP
    Biochemistry; 2000 May; 39(19):5630-41. PubMed ID: 10801313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Templated Synthesis of Copper Nanoclusters with a Hybrid Lysozyme-Polymer Material for Enhanced Fluorescence.
    Larkin JO; Cheng Z; Arefeayne Y; Segatori L; Jones MR; Ball ZT
    Bioconjug Chem; 2024 Jun; 35(6):732-736. PubMed ID: 38739108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review.
    Mu J; Peng Y; Shi Z; Zhang D; Jia Q
    Mikrochim Acta; 2021 Oct; 188(11):384. PubMed ID: 34664135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discriminating detection of dissolved ferrous and ferric ions using copper nanocluster-based fluorescent probe.
    Zhang Z; Xue W; Yang J; Zhao Y; Guo J
    Anal Biochem; 2021 Jun; 623():114171. PubMed ID: 33775668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of dimeric aminoglycosides to the HIV-1 rev responsive element (RRE) RNA construct.
    Tok JB; Dunn LJ; Des Jean RC
    Bioorg Med Chem Lett; 2001 May; 11(9):1127-31. PubMed ID: 11354359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine.
    Gu Z; Cao Z
    Anal Bioanal Chem; 2018 Aug; 410(20):4991-4999. PubMed ID: 29882076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Eco-Friendly Synthetic Approach for Copper Nanoclusters and Their Potential in Lead Ions Sensing and Biological Applications.
    Saleh SM; El-Sayed WA; El-Manawaty MA; Gassoumi M; Ali R
    Biosensors (Basel); 2022 Mar; 12(4):. PubMed ID: 35448257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters.
    Li H; Chang J; Hou T; Ge L; Li F
    Talanta; 2016 Nov; 160():475-480. PubMed ID: 27591641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Luminescent Aggregated Copper Nanoclusters Nanoswitch Controlled by Hydrophobic Interaction for Real-Time Monitoring of Acid Phosphatase Activity.
    Huang Y; Feng H; Liu W; Zhou Y; Tang C; Ao H; Zhao M; Chen G; Chen J; Qian Z
    Anal Chem; 2016 Dec; 88(23):11575-11583. PubMed ID: 27796092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable and sensitive sensor for alkaline phosphatase based on target-triggered wavelength tuning of fluorescent copper nanoclusters.
    Zhu T; Chen J; Chai Q; Zeng S; Liu Y
    Anal Chim Acta; 2022 Nov; 1232():340453. PubMed ID: 36257738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA-templated copper nanocluster: A robust and universal fluorescence switch for bleomycin assay.
    Li P; Xie Z; Zhuang L; Deng L; Huang J
    Int J Biol Macromol; 2023 Apr; 234():123756. PubMed ID: 36812975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters.
    Fan Y; Yu W; Liao Y; Jiang X; Wang Z; Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 1):120509. PubMed ID: 34688060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.