These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37981488)

  • 1. Homozygous gene disruption in diploid yeast through a single transformation.
    Kobashi Y; Nakayama E; Fukumori N; Shimojima A; Tabira M; Nishimura Y; Mukae M; Muto A; Nakashima N; Okutsu K; Yoshizaki Y; Futagami T; Takamine K; Tamaki H
    J Biosci Bioeng; 2024 Jan; 137(1):31-37. PubMed ID: 37981488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph.
    Lu P; Davis BP; Hendrick J; Jeffries TW
    Appl Microbiol Biotechnol; 1998 Feb; 49(2):141-6. PubMed ID: 9534253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae.
    Akada R; Kitagawa T; Kaneko S; Toyonaga D; Ito S; Kakihara Y; Hoshida H; Morimura S; Kondo A; Kida K
    Yeast; 2006 Apr; 23(5):399-405. PubMed ID: 16598691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity.
    Kotaka A; Sahara H; Kondo A; Ueda M; Hata Y
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):387-95. PubMed ID: 19137286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae.
    Zang Y; Garrè M; Gjuracic K; Bruschi CV
    Yeast; 2002 Apr; 19(6):553-64. PubMed ID: 11921104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial gene overexpression and recessive mutant gene introduction in sake yeast.
    Ano A; Suehiro D; Cha-Aim K; Aritomi K; Phonimdaeng P; Nontaso N; Hoshida H; Mizunuma M; Miyakawa T; Akada R
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):633-40. PubMed ID: 19270382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae.
    Moon HY; Sim GH; Kim HJ; Kim K; Kang HA
    J Microbiol; 2022 Jan; 60(1):18-30. PubMed ID: 34964942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCR- and ligation-mediated synthesis of split-marker cassettes with long flanking homology regions for gene disruption in Candida albicans.
    de Hoogt R; Luyten WH; Contreras R; De Backer MD
    Biotechniques; 2000 Jun; 28(6):1112-6. PubMed ID: 10868276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii.
    Boretsky YR; Pynyaha YV; Boretsky VY; Kutsyaba VI; Protchenko OV; Philpott CC; Sibirny AA
    J Microbiol Methods; 2007 Jul; 70(1):13-9. PubMed ID: 17467833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-step cloning-free PCR-based method for the deletion of genes in the opportunistic pathogenic yeast Candida lusitaniae.
    El-Kirat-Chatel S; Dementhon K; Noël T
    Yeast; 2011 Apr; 28(4):321-30. PubMed ID: 21456057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae.
    Kaneko S; Tanaka T; Noda H; Fukuda H; Akada R; Kondo A
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):783-9. PubMed ID: 19455322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling.
    Zou S; Sun S; Zhang X; Li J; Guo J; Hong J; Ma Y; Zhang M
    Biotechnol Appl Biochem; 2021 Oct; 68(5):953-963. PubMed ID: 32658331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast.
    Akada R; Hirosawa I; Kawahata M; Hoshida H; Nishizawa Y
    Yeast; 2002 Mar; 19(5):393-402. PubMed ID: 11921088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygromycin B resistance gene.
    Hara A; Arie M; Kanai T; Matsui T; Matsuda H; Furuhashi K; Ueda M; Tanaka A
    Arch Microbiol; 2001 Nov; 176(5):364-9. PubMed ID: 11702078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designer deletion and prototrophic strains derived from Saccharomyces cerevisiae strain W303-1a.
    Replogle K; Hovland L; Rivier DH
    Yeast; 1999 Aug; 15(11):1141-9. PubMed ID: 10455237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a URA3 deletion strain from the allotetraploid bottom-fermenting yeast Saccharomyces pastorianus.
    Murakami N; Miyoshi S; Yokoyama R; Hoshida H; Akada R; Ogata T
    Yeast; 2012 May; 29(5):155-65. PubMed ID: 22576669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.
    Gueldener U; Heinisch J; Koehler GJ; Voss D; Hegemann JH
    Nucleic Acids Res; 2002 Mar; 30(6):e23. PubMed ID: 11884642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains.
    Alani E; Cao L; Kleckner N
    Genetics; 1987 Aug; 116(4):541-5. PubMed ID: 3305158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient construction of homozygous diploid strains identifies genes required for the hyper-filamentous phenotype in Saccharomyces cerevisiae.
    Furukawa K; Furukawa T; Hohmann S
    PLoS One; 2011; 6(10):e26584. PubMed ID: 22039512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.