These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 37981543)
21. DICOM 3D viewers, virtual reality or 3D printing - a pilot usability study for assessing the preference of orthopedic surgeons. Popescu D; Marinescu R; Laptoiu D; Deac GC; Cotet CE Proc Inst Mech Eng H; 2021 Sep; 235(9):1014-1024. PubMed ID: 34176364 [TBL] [Abstract][Full Text] [Related]
22. Cinematic rendering to improve visualization of supplementary and ectopic teeth using CT datasets. Willershausen I; Necker F; Kloeckner R; Seidel CL; Paulsen F; Gölz L; Scholz M Dentomaxillofac Radiol; 2023 Apr; 52(4):20230058. PubMed ID: 37015249 [TBL] [Abstract][Full Text] [Related]
23. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios. Talanki VR; Peng Q; Shamir SB; Baete SH; Duong TQ; Wake N J Magn Reson Imaging; 2022 Apr; 55(4):1060-1081. PubMed ID: 34046959 [TBL] [Abstract][Full Text] [Related]
24. The potential of 3D models and augmented reality in teaching cross-sectional radiology. Pinsky BM; Panicker S; Chaudhary N; Gemmete JJ; Wilseck ZM; Lin L Med Teach; 2023 Oct; 45(10):1108-1111. PubMed ID: 37542360 [TBL] [Abstract][Full Text] [Related]
25. Patient-specific 3-dimensionally printed models for neurosurgical planning and education. Panesar SS; Magnetta M; Mukherjee D; Abhinav K; Branstetter BF; Gardner PA; Iv M; Fernandez-Miranda JC Neurosurg Focus; 2019 Dec; 47(6):E12. PubMed ID: 31786547 [TBL] [Abstract][Full Text] [Related]
26. Nerves of Steel: a Low-Cost Method for 3D Printing the Cranial Nerves. Javan R; Davidson D; Javan A J Digit Imaging; 2017 Oct; 30(5):576-583. PubMed ID: 28224379 [TBL] [Abstract][Full Text] [Related]
27. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man's neuronavigation. Gosal JS; Tiwari S; Sharma T; Agrawal M; Garg M; Mahal S; Bhaskar S; Sharma RK; Janu V; Jha DK Neurosurg Focus; 2021 Aug; 51(2):E23. PubMed ID: 34333461 [TBL] [Abstract][Full Text] [Related]
28. DICOM segmentation and STL creation for 3D printing: a process and software package comparison for osseous anatomy. Kamio T; Suzuki M; Asaumi R; Kawai T 3D Print Med; 2020 Jul; 6(1):17. PubMed ID: 32737703 [TBL] [Abstract][Full Text] [Related]
29. Interactive 3D Reconstruction of Pulmonary Anatomy for Preoperative Planning, Virtual Simulation, and Intraoperative Guiding in Video-Assisted Thoracoscopic Lung Surgery. Sardari Nia P; Olsthoorn JR; Heuts S; Maessen JG Innovations (Phila); 2019 Feb; 14(1):17-26. PubMed ID: 30848710 [TBL] [Abstract][Full Text] [Related]
30. Usefulness of Three-Dimensional Modeling in Surgical Planning, Resident Training, and Patient Education. Andolfi C; Plana A; Kania P; Banerjee PP; Small S J Laparoendosc Adv Surg Tech A; 2017 May; 27(5):512-515. PubMed ID: 27813710 [TBL] [Abstract][Full Text] [Related]
31. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI. Moore CW; Wilson TD; Rice CL Ann Anat; 2017 Jan; 209():69-75. PubMed ID: 27777116 [TBL] [Abstract][Full Text] [Related]
33. Use of individualized 3D-printed models of pancreatic cancer to improve surgeons' anatomic understanding and surgical planning. Song C; Min JH; Jeong WK; Kim SH; Heo JS; Han IW; Shin SH; Yoon SJ; Choi SY; Moon S Eur Radiol; 2023 Nov; 33(11):7646-7655. PubMed ID: 37231071 [TBL] [Abstract][Full Text] [Related]
34. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality. Ghosh RM; Jolley MA; Mascio CE; Chen JM; Fuller S; Rome JJ; Silvestro E; Whitehead KK 3D Print Med; 2022 Apr; 8(1):11. PubMed ID: 35445896 [TBL] [Abstract][Full Text] [Related]
35. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing. Oshiro Y; Ohkohchi N Tissue Eng Part A; 2017 Jun; 23(11-12):474-480. PubMed ID: 28343411 [TBL] [Abstract][Full Text] [Related]
37. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences. Checcucci E; De Cillis S; Porpiglia F Curr Opin Urol; 2020 Jan; 30(1):55-64. PubMed ID: 31725000 [TBL] [Abstract][Full Text] [Related]
39. Advanced hepatic vasculobiliary imaging segmentation and 3D reconstruction as an aid in the surgical management of high biliary stenosis. Pereira da Silva N; Abreu I; Serôdio M; Ferreira L; Alexandrino H; Donato P BMC Med Imaging; 2020 Oct; 20(1):120. PubMed ID: 33092546 [TBL] [Abstract][Full Text] [Related]
40. In Vivo Imaging-Based 3-Dimensional Pelvic Prototype Models to Improve Education Regarding Sexual Anatomy and Physiology. Abdulcadir J; Dewaele R; Firmenich N; Remuinan J; Petignat P; Botsikas D; Brockmann C J Sex Med; 2020 Sep; 17(9):1590-1602. PubMed ID: 32675048 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]