These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37982508)

  • 1. Mapping Mammalian 3D Genome Interactions with Micro-C-XL.
    Metelova M; Jensen RR; Krietenstein N
    J Vis Exp; 2023 Nov; (201):. PubMed ID: 37982508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Mammalian 3D Genomes by Micro-C.
    Slobodyanyuk E; Cattoglio C; Hsieh TS
    Methods Mol Biol; 2022; 2532():51-71. PubMed ID: 35867245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian Micro-C-XL.
    Krietenstein N; Rando OJ
    Methods Mol Biol; 2022; 2458():321-332. PubMed ID: 35103975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping nucleosome-resolution chromatin organization and enhancer-promoter loops in plants using Micro-C-XL.
    Sun L; Zhou J; Xu X; Liu Y; Ma N; Liu Y; Nie W; Zou L; Deng XW; He H
    Nat Commun; 2024 Jan; 15(1):35. PubMed ID: 38167349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyses of Promoter , Enhancer, and Nucleosome Organization in Mammalian Cells by MNase-Seq.
    Esnault C; Magat T; García-Oliver E; Andrau JC
    Methods Mol Biol; 2021; 2351():93-104. PubMed ID: 34382185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C.
    Lee BH; Wu Z; Rhie SK
    Epigenetics Chromatin; 2022 Dec; 15(1):41. PubMed ID: 36544209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling Accessible Chromatin and Nucleosomes in the Mammalian Genome.
    Lim HW; Iwafuchi M
    Methods Mol Biol; 2023; 2599():59-68. PubMed ID: 36427143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments.
    Goel VY; Huseyin MK; Hansen AS
    Nat Genet; 2023 Jun; 55(6):1048-1056. PubMed ID: 37157000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The macro and micro of chromosome conformation capture.
    Goel VY; Hansen AS
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e395. PubMed ID: 32987449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MNase Profiling of Promoter Chromatin in
    Cole L; Dennis J
    G3 (Bethesda); 2020 Jul; 10(7):2171-2178. PubMed ID: 32404364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome.
    Hsieh TS; Fudenberg G; Goloborodko A; Rando OJ
    Nat Methods; 2016 Dec; 13(12):1009-1011. PubMed ID: 27723753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development.
    Gòdia M; Lian Y; Naval-Sanchez M; Ponte I; Rodríguez-Gil JE; Sanchez A; Clop A
    PeerJ; 2023; 11():e15520. PubMed ID: 37361042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D structures of individual mammalian genomes studied by single-cell Hi-C.
    Stevens TJ; Lando D; Basu S; Atkinson LP; Cao Y; Lee SF; Leeb M; Wohlfahrt KJ; Boucher W; O'Shaughnessy-Kirwan A; Cramard J; Faure AJ; Ralser M; Blanco E; Morey L; Sansó M; Palayret MGS; Lehner B; Di Croce L; Wutz A; Hendrich B; Klenerman D; Laue ED
    Nature; 2017 Apr; 544(7648):59-64. PubMed ID: 28289288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq).
    Hoeijmakers WAM; Bártfai R
    Methods Mol Biol; 2018; 1689():83-101. PubMed ID: 29027167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide Mapping of the Nucleosome Landscape by Micrococcal Nuclease and Chemical Mapping.
    Voong LN; Xi L; Wang JP; Wang X
    Trends Genet; 2017 Aug; 33(8):495-507. PubMed ID: 28693826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers.
    Chereji RV; Ocampo J; Clark DJ
    Mol Cell; 2017 Feb; 65(3):565-577.e3. PubMed ID: 28157509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.