These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37982688)

  • 1. The Laboratory Automation Protocol (LAP) Format and Repository: A Platform for Enhancing Workflow Efficiency in Synthetic Biology.
    Anhel AM; Alejaldre L; Goñi-Moreno Á
    ACS Synth Biol; 2023 Dec; 12(12):3514-3520. PubMed ID: 37982688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Script-based automation of analytical instrument software tasks.
    Tentarelli S; Romero R; Lamb ML
    SLAS Technol; 2022 Jun; 27(3):209-213. PubMed ID: 35058193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pySBOL: A Python Package for Genetic Design Automation and Standardization.
    Bartley BA; Choi K; Samineni M; Zundel Z; Nguyen T; Myers CJ; Sauro HM
    ACS Synth Biol; 2019 Jul; 8(7):1515-1518. PubMed ID: 30424601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLACE: an open-source python package for laboratory automation, control, and experimentation.
    Johnson JL; Tom Wörden H; van Wijk K
    J Lab Autom; 2015 Feb; 20(1):10-6. PubMed ID: 25304874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.
    Bates M; Berliner AJ; Lachoff J; Jaschke PR; Groban ES
    ACS Synth Biol; 2017 Jan; 6(1):167-171. PubMed ID: 27529358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved compliance by BPM-driven workflow automation.
    Holzmüller-Laue S; Göde B; Fleischer H; Thurow K
    J Lab Autom; 2014 Dec; 19(6):528-45. PubMed ID: 25246440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation.
    Neubert S; Göde B; Gu X; Stoll N; Thurow K
    SLAS Technol; 2017 Apr; 22(2):206-216. PubMed ID: 27908978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment.
    Thieme A; Renwick S; Marschmann M; Guimaraes PI; Weissenborn S; Clifton J
    SLAS Technol; 2024 Oct; 29(5):100180. PubMed ID: 39222913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SynBioHub: A Standards-Enabled Design Repository for Synthetic Biology.
    McLaughlin JA; Myers CJ; Zundel Z; Mısırlı G; Zhang M; Ofiteru ID; Goñi-Moreno A; Wipat A
    ACS Synth Biol; 2018 Feb; 7(2):682-688. PubMed ID: 29316788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Laboratory Processes with Total Laboratory Automation.
    Yu HE; Lanzoni H; Steffen T; Derr W; Cannon K; Contreras J; Olson JE
    Lab Med; 2019 Jan; 50(1):96-102. PubMed ID: 29982789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Laboratory Automation in Synthetic Biology.
    Stephenson A; Lastra L; Nguyen B; Chen YJ; Nivala J; Ceze L; Strauss K
    ACS Synth Biol; 2023 Nov; 12(11):3156-3169. PubMed ID: 37935025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory information management software for engineered mini-protein therapeutic workflow.
    Brusniak MY; Ramos H; Lee B; Olson JM
    BMC Bioinformatics; 2019 Jun; 20(1):343. PubMed ID: 31208323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Automated Versatile Diagnostic Workflow for Infectious Disease Detection in Low-Resource Settings.
    Urrutia Iturritza M; Mlotshwa P; Gantelius J; Alfvén T; Loh E; Karlsson J; Hadjineophytou C; Langer K; Mitsakakis K; Russom A; Jönsson HN; Gaudenzi G
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.
    Calabria A; Spinozzi G; Benedicenti F; Tenderini E; Montini E
    BMC Bioinformatics; 2015; 16 Suppl 9(Suppl 9):S5. PubMed ID: 26051409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory automation in clinical bacteriology: what system to choose?
    Croxatto A; Prod'hom G; Faverjon F; Rochais Y; Greub G
    Clin Microbiol Infect; 2016 Mar; 22(3):217-35. PubMed ID: 26806135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible End2End Workflow Automation of Hit-Discovery Research.
    Holzmüller-Laue S; Göde B; Thurow K
    J Lab Autom; 2014 Aug; 19(4):349-61. PubMed ID: 24464814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biowep: a workflow enactment portal for bioinformatics applications.
    Romano P; Bartocci E; Bertolini G; De Paoli F; Marra D; Mauri G; Merelli E; Milanesi L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S19. PubMed ID: 17430563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardizing Automated DNA Assembly: Best Practices, Metrics, and Protocols Using Robots.
    Walsh DI; Pavan M; Ortiz L; Wick S; Bobrow J; Guido NJ; Leinicke S; Fu D; Pandit S; Qin L; Carr PA; Densmore D
    SLAS Technol; 2019 Jun; 24(3):282-290. PubMed ID: 30768372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automation in the Thrombosis and Hemostasis Laboratory.
    Salazar E; Higgins RA
    Methods Mol Biol; 2023; 2663():51-62. PubMed ID: 37204703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.