These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37983011)

  • 1. Amorphous Thickness-Dependent Strengthening-Softening Transition in Crystalline-Amorphous Nanocomposites.
    Qian L; Yang W; Luo J; Wang Y; Chan KC; Yang XS
    Nano Lett; 2023 Dec; 23(23):11288-11296. PubMed ID: 37983011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals.
    Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F
    Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twin thickness-dependent tensile deformation mechanism on strengthening-softening of Si nanowires.
    Yimer MM; Wubeshet DA; Qin X
    Heliyon; 2023 May; 9(5):e16039. PubMed ID: 37215880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates.
    Guo W; Jägle EA; Choi PP; Yao J; Kostka A; Schneider JM; Raabe D
    Phys Rev Lett; 2014 Jul; 113(3):035501. PubMed ID: 25083653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-pressure strengthening in ultrafine-grained metals.
    Zhou X; Feng Z; Zhu L; Xu J; Miyagi L; Dong H; Sheng H; Wang Y; Li Q; Ma Y; Zhang H; Yan J; Tamura N; Kunz M; Lutker K; Huang T; Hughes DA; Huang X; Chen B
    Nature; 2020 Mar; 579(7797):67-72. PubMed ID: 32094661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the discrepancies in size dependence of hardness and thermal stability in crystalline/amorphous nanostructured multilayers: Cu/Cu-Ti vs. Cu/HfO
    Yue T; Wang YQ; Zhang JY; Wu K; Li G; Kuang J; Liu G; Sun J
    Nanoscale; 2018 Jul; 10(29):14331-14341. PubMed ID: 30020297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystalline-Amorphous Nanostructures: Microstructure, Property and Modelling.
    Wei B; Li L; Shao L; Wang J
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data compilation on the effect of grain size, temperature, and texture on the strength of a single-phase FCC MnFeNi medium-entropy alloy.
    Schneider M; Werner F; Langenkämper D; Reinhart C; Laplanche G
    Data Brief; 2020 Feb; 28():104807. PubMed ID: 31871972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness.
    Duan F; Lin Y; Pan J; Zhao L; Guo Q; Zhang D; Li Y
    Sci Adv; 2021 Jun; 7(27):. PubMed ID: 34193428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved ductility of Cu64Zr36 metallic glass/Cu nanocomposites via phase and grain boundaries.
    Jian WR; Wang L; Li B; Yao XH; Luo SN
    Nanotechnology; 2016 Apr; 27(17):175701. PubMed ID: 26965457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the amorphous layer in bone mineral and biomimetic apatite: A combined small- and wide-angle X-ray scattering analysis.
    Bertolotti F; Carmona FJ; Dal Sasso G; Ramírez-Rodríguez GB; Delgado-López JM; Pedersen JS; Ferri F; Masciocchi N; Guagliardi A
    Acta Biomater; 2021 Jan; 120():167-180. PubMed ID: 32438109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Primary Processing Techniques and Significance of Hall-Petch Strengthening on the Mechanical Response of Magnesium Matrix Composites Containing TiO₂ Nanoparticulates.
    Meenashisundaram GK; Nai MH; Gupta M
    Nanomaterials (Basel); 2015 Jul; 5(3):1256-1283. PubMed ID: 28347063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance.
    Hua P; Xia M; Onuki Y; Sun Q
    Nat Nanotechnol; 2021 Apr; 16(4):409-413. PubMed ID: 33479541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data compilation regarding the effects of grain size and temperature on the strength of the single-phase FCC CrFeNi medium-entropy alloy.
    Schneider M; Laplanche G
    Data Brief; 2021 Feb; 34():106712. PubMed ID: 33490332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.